
Constrained Clustering using Column Generation

Behrouz Babaki1, Tias Guns1, and Siegfried Nijssen1,2

1 Department of Computer Science, KU Leuven
{firstname.lastname}@cs.kuleuven.be

2 LIACS, Universiteit Leiden

Abstract. In recent years, it has been realized that many problems in
data mining can be seen as pure optimisation problems. In this work,
we investigate the problem of constraint-based clustering from an opti-
misation point of view. The use of constraints in clustering is a recent
development and allows to encode prior beliefs about desirable clusters.
This paper proposes a new solution for minimum-sum-of-squares clus-
tering under constraints, where the constraints considered are must-link
constraints, cannot-link constraints and anti-monotone constraints on
individual clusters. Contrary to most earlier approaches, it is exact and
provides a fundamental approach for including these constraints. The
proposed approach uses column generation in an integer linear program-
ming setting. The key insight is that these constraints can be pushed into
a branch-and-bound algorithm used for generating new columns. Exper-
imental results show the feasibility of the approach and the promise of
the branch-and-bound algorithm that solves the subproblem directly.

1 Introduction

One of the core problems studied in the data mining and machine learning
literature is that of clustering. Given a database of examples, the clustering task
involves identifying groups of similar examples; such groups are for instance
indicative for patients with similar clinical observations, customers with similar
purchase behaviour, or website visitors with similar click behaviour.

While the clustering problem is common in the data mining literature, it is
only recently realized in the data mining community that this problem is closely
related to problems studied in the optimization literature, and hence that open
problems in clustering may be solved using generic optimization tools. In this
paper, we study one such open problem: Optimal Constrained Minimum Sum-
of-Squares Clustering (MSSC). We show that a generic optimization strategy
can be used to address this problem.

Many types of clustering problems are known in the literature; however,
MSS clustering is arguably one of the most popular clustering settings. In MSS
clustering, the task is to find a clustering in which each example is put into exactly
one cluster. Clusters do not overlap and together they cover all the available
data. Clusters should be chosen such that points within a cluster have small
sum-of-squared distances.

The popularity of the MSS clustering setting is partially due to the k-means
algorithm. K-means is a heuristic algorithm which quickly converges to a local
minimum and is included in most data mining toolkits. Even though successful,
basic k-means has several disadvantages. One is its randomized nature: each run
of the algorithm may yield a different clustering. Another is its lacking ability
to take into account prior knowledge of a user.

There are many types of prior knowledge that a user may have. A common
perspective is to formalize prior knowledge in terms of constraints on the clusters
one wishes to find [6], where the most popular constraints are must-link and
cannot-link constraints. A must-link constraint enforces that examples that are
known to be related, are part of the same cluster. A cannot-link constraint,
on the other hand, enforces that examples that are not related are not part of
the same cluster. These constraints are popular as many other constraints can
be transformed into must-link and cannot-link constraints [9]. The maximum
cluster diameter constraint, for instance, requires that each cluster must have a
diameter of at least distance α; hence, any two points that are further than α
apart cannot link together. The minimum cluster separation constraint requires
that clusters must be separated by at least distance β; hence, any two points
that are less than β apart must link together.

Other clustering settings that can be seen as constraint-based clustering prob-
lems are problems in which clusters need to have a minimum or maximum size,
or where one is looking for alternative clusterings [15].

An important question is how to find a clustering that satisfies constraints.
Here, most algorithms in the data mining literature take a heuristic approach.
Arguably, the most well-known example is the COP-k-means algorithm [23],
which modifies the k-means algorithm to deal with must-link and cannot-link
constraints. Unfortunately, even though the algorithm is fast, it may not find a
solution that satisfies all constraints even if such a solution exists [9]. In itself, this
is not surprising as the problem is known to be NP hard and hence a polynomial
solution is not likely to exist [2, 9]. As a result, the problem of how to solve the
MSSC problem under constraints is still open.

This paper addresses this challenge and develops a generic approach that can
find an optimal solution to constrained MSSC problems. While we will focus on
must-link and cannot-link constraints, the approach allows for the inclusion of
several other constraints as well; we will show that the approach works for all
constraints that are anti-monotone.

Our approach builds on earlier work that showed the feasibility of uncon-
strained optimal MSS clustering [14, 4] by using column generation in an integer
linear programming setting. The column generation process is here responsible
for identifying candidate clusters that can be put into a clustering. We will show
that most clustering constraints can be dealt with by pushing the constraints in
a branch-and-bound algorithm for column generation.

This paper is organized as follows. Section 2 introduces MSS clustering and
MSS clustering under constraints. Section 3 gives an overview of how to find a
solution using a column generation process, building on the earlier work of [14, 4].

In Section 4 we introduce a branch-and-bound approach for generating columns
under constraints. Section 5 discusses practical considerations in the implemen-
tation of this algorithm. Section 6 provides experiments, Section 7 discusses
related work and Section 8 concludes.

2 MSSC

Assumed given is a dataset D with n data points. Each example in the dataset is
a point p in an m-dimensional space and is represented by a vector with m values.
One cluster is defined as a set of data points C ⊆ D. A clustering consists of k
such clusters, and corresponds to a partitioning of the data into k groups. The
number of clusters k is typically given upfront by the user. In MSS clustering,
the clusters in a clustering are usually non-overlapping, that is, each data point
belongs to exactly one cluster.

Given a cluster C ⊆ D, the cluster center or centroid is the mean of the data
points that belong to that cluster:

zC = mean(C) =

∑
p∈C p

|C|
(1)

The quality of a clustering can be measured in many different ways. In MSS
clustering, the quality of a clustering is measured using the sum of squared dis-
tances between each point in a cluster and the centroid of the cluster: SSC(C) =∑

C∈C
∑

p∈C d
2(p, zC), where d(·, ·) calculates the distance between two points,

for example, the Euclidean distance.
Note that for a cluster C, the sum of squared distances to its centroid equals

the sum of all pairwise distances between the points of that cluster, divided by
the size of the cluster:∑

p∈C
d2(p, zC) =

∑
p1,p2∈C d

2(p1, p2)

|C|
(2)

For simplicity of notation, when we write p1, p2 ∈ C we assume that every pair
of two points in C is included in the sum exactly once. To summarize the MSSC
problem, a mathematical programming formulation is given in Table 1.

The best known clustering algorithm that uses sum of squared distances is
the k-means algorithm. It is an approximate algorithm that starts with an initial
random clustering and iteratively minimizes the sum-of-squares using the follow-
ing two steps: 1) add each data point to the cluster with closest cluster centre;
2) compute the new cluster centre of the resulting clusters. These two steps are
iterated until convergence, that is, the cluster centres do not change any more.
This procedure can get stuck in local minima and it is not uncommon that two
different runs (e.g. with different initial clusters) produce different clusterings.

Constraints. The most well-known constraints are must-link and cannot-link
constraints. Let ML and CL be subsets of D ×D. Then a cluster C satisfies a

must-link constraint (p1, p2) ∈ML iff |{p1, p2}∩C| 6= 1; it satisfies a cannot-link
constraint (p1, p2) ∈ CL iff |{p1, p2} ∩ C| ≤ 1.

Note that both constraints can be evaluated on the individual clusters in a
clustering. This is a key observation for our work.

In a seminal paper by Wagstaff et al [23], the COP-k-means algorithm is pro-
posed. COP-k-means is an extention of the k-means algorithm towards must-link
and cannot-link constraints. It modifies the k-means algorithm by not assign-
ing each point to its closest cluster centre, but rather to the closest centre that
satisfies all constraints. If no such centre exists, the algorithm terminates. An
alternative approach is to continue running the algorithm, even though the final
solution might then not satisfy all constraints; in any case, the algorithm is not
guaranteed to find a solution even if there exists one.

Many other constraints are possible. We will not give a complete overview
here (see Section 7 and [6]). For this work it is however important to observe that
many problems can be formalized using constraints that are anti-monotone. We
call a boolean constraint ϕ(C) on a cluster C of data points anti-monotone iff
ϕ(C) implies ϕ(C ′) for all C ′ ⊆ C. The cannot-link constraint is anti-monotone:
if a cluster C satisfies a cannot-link constraint, every subset also satisfies this
constraint. There are many other anti-monotone constraints:

– a maximum cluster size constraint on clusters |C| ≤ θ, which can be used to
avoid that one cluster dominates a clustering;

– a maximum overlap constraint |C ∩X| ≤ θ, which can be used to avoid that
any cluster found is too similar to a given set of points X; this generalizes
the cannot-link constraint;

– a minimum difference constraint |C\X| ≤ θ, which requires a certain simi-
larity to cluster X;

– a soft cannot-link constraint, which requires that the number of pairs of
points in a cluster that have a cannot-link constraint among them is bounded;

– conjunctions or disjunctions of anti-monotone constraints.

A conjunction of anti-monotone constraints can for instance be used to find an
alternative clustering: starting from a clustering C, we can enforce that in a new
clustering every cluster is different from all clusters in the earlier clustering.

Must-link constraints are an example of constraints that are not anti-monotone.
In the following sections, we will show how to solve the MSS problem under a

combination of anti-monotone constraints and must-link constraints, by adapting
a state-of-the-art unconstrained optimal clustering algorithm. A feature of the
algorithm is that it exploits the anti-monotonicity of cluster constraints.

3 Column generation framework

In this section we give a brief overview of an ILP formulation of MSSC and a
column generation method for solving it, based on the (unconstrained) MSSC
column generation framework of Aloise et al. [4]. The next section will introduce
our proposed approach for taking constraints into account.

minimize
C

∑
C∈C

∑
p∈C

d2(p, zC), (3)

s.t.

C1 ∩ C2 = ∅ ∀C1, C2 ∈ C
(4)

|
⋃
C∈C

C| = n (5)

|C| = k (6)

Table 1. MSS clustering

minimize
x

∑
t∈T

ctxt, (7)

s.t. ∑
t∈T

xtait = 1 ∀i ∈ {1, . . . , n}

(8)∑
t∈T

xt = k (9)

xt ∈ {0, 1} ∀t ∈ T
(10)

Table 2. An ILP model for MSS clustering

An ILP formulation of MSSC. Given a dataset with n data points, the number
of possible clusters is 2n. In principle, we can hence reformulate the clustering
problem using a Boolean n by 2n matrix A that represents all possible clusters:
each column is a cluster where ait = 1 if data point pi is in cluster t and
ait = 0 otherwise. We define the cost of a cluster (column) as the sum of squared
distances of the points in the cluster to its mean: ct =

∑n
i=1 d

2(pi, zt)ait.

The problem in equations 3-6 can then be formulated as an Integer Linear
Program as in Table 2 [14], where T = {1, . . . , 2n} denotes all possible clusters.
Equation 7 corresponds to the SSC criterion. Equation 8 states that each data
point must be covered exactly once. Hence it enforces both that the clusters
are not overlapping and that all points are covered. Equation 9 finally ensures
that exactly k clusters are found. Note that the k-means (and COP-k-means)
algorithm can return empty clusters and hence less than k clusters in some
occasions. This can not arise in the above formulation.

For even moderate sizes of n the number of clusters will be too large to solve
the above ILP by first materializing A. However, we can use a column generation
approach in which the master problem (Eq. 7-10) is restricted to a smaller set
T ′ ⊆ T and columns (clusters) are incrementally added until the optimal solution
is provably found.

Column Generation iterates between solving the restricted master problem and
adding one or multiple columns. A column is a candidate for being added to
the restricted master problem if adding it can improve the objective function.
If no such column can be found, one is certain that the optimal solution of the
restricted master problem is also the optimal solution of the full master problem.
Whether a column can improve on the objective can be derived from the dual.

The dual of the master problem (Table 2) is given in Table 3. Here λi indicates
a dual value corresponding to the constraint in equation 8 and σ a dual value
corresponding to equation 9. One column in the master problem corresponds to
one constraint in the dual (Equation 12).

maximize
λ,σ

− kσ +

n∑
i=1

λi (11)

s.t.

− σ +

n∑
i=1

aitλi ≤ ct ∀t ∈ T

(12)

λi ≥ 0 ∀i ∈ {1, . . . , n}
(13)

σ ≥ 0 (14)

Table 3. Dual of the optimization prob-
lem.

minimize
x

∑
t∈T

ctxt +

n∑
i=1

θiyi, (15)

s.t. ∑
t∈T

xtait + yi = 1 ∀i ∈ N

(16)∑
t∈T

xt = k (17)

xt ∈ {0, 1} ∀t ∈ T
(18)

− µ ≤ yi ≤ µ ∀i ∈ N
(19)

Table 4. Model with stabilization in-
cluded (N = {1, . . . , n}).

Given values for λ and σ, obtained by solving a restricted master problem, we
need to determine whether there are columns for which σ−

∑n
i=1 aitλi + ct < 0,

that is, whether there are columns with a negative reduced cost. If no such column
can be found, the current solution is optimal.

Finding a column with negative reduced cost is called pricing. While a pric-
ing routine can return any column with a negative reduced cost, one typically
searches for the smallest one; hence we are interested in finding:

arg min
t∈T

σ −
n∑

i=1

aitλi + ct. (20)

Solving this pricing problem is not trivial, given the large number of columns.
The details of solving the pricing subproblem will be discussed in more detail in
Section 4.

When solving the restricted master problem, it is possible that it has no
feasible solution. In this case, Farkas’ Lemma [22] can be used to add columns
that gradually move the solutions of the restricted master problems closer to
the feasible region, or to prove infeasibility of the master problem. This Farkas
pricing is similar to the regular pricing explained above. In this case, the problem
to optimize is:

arg min
t∈T

σ′ −
n∑

i=1

aitλ
′
i (21)

where σ′ and λ′ are the dual Farkas values. Note that this is the same problem
as the regular pricing problem above, with the exception that the cost ct of the
cluster does not need to be taken into account.

4 Column generation with constraints.

Given the earlier observations, one can see that enforcing constraints on clusters
C amounts to removing from the cluster matrix A all clusters that do not satisfy
these constraints. In a column generation scheme, this means that it is sufficient
to add these constraints to the subproblem solver; they do not need to be added
to the master problem. The rest of this section explains our proposed branch-
and-bound method for solving the (constrained) subproblem.

4.1 Subproblem solving

Essentially, in each iteration of the column generation process we need to solve a
constrained minimisation problem. The objective function to minimize is given
by equation 20 (equation 21 in case of infeasibility). By removing the constant
σ and using equation 2, we can rewrite the objective as:

arg min
t∈T

n∑
i=1

d2(pi, zt)ait + σ −
n∑

i=1

aitλi (22)

= arg min
t∈T

∑n
i=1

∑n
j=i+1 d

2(pi, pj)aitajt∑n
i=1 ait

−
n∑

i=1

aitλi (23)

Let us represent the cluster t ∈ T and its corresponding column a·t as a set X.
We define d(X) =

∑
i,j∈X d2(pi, pj), where every pair is only considered once

in the sum, d(X,Y) =
∑

i∈X,j∈Y d
2(pi, pj) and λ(X) =

∑
i∈X λi. We can now

rephrase our problem as that we wish to search for a cluster X:

arg min
X

d(X)

|X|
− λ(X) (24)

and such that all constraints on clusters are satisfied.

Blocks. A first simple observation is that the must-link constraints are transitive
and hence the must-link relation is an equivalence relation. We will refer to
the equivalence classes as blocks. We can rephrase our optimization problem
as an optimization problem over the blocks. Let X = [pi]ML denote the block
that point pi ∈ D belongs to (a point can never belong to two blocks) and let
D/ML = {[pi]ML | pi ∈ D} denote the blocks in the data. We are looking for a
subset of the blocks X̄ ⊆ D/ML such that the following criterion is minimized:

f(X̄) =

 ∑
X∈X̄

d(X) +
∑

X,Y ∈X̄

d(X,Y)

 /
∑
X∈X̄

|X| −
∑
X∈X̄

λ(X). (25)

Note that we can precompute the terms d(X), d(X,Y), |X| and λ(X) for all
X,Y ∈ D/ML. Note furthermore that if ML = ∅ then ∀X ∈ X̄ : |X| = 1 and
this formula is identical to the one without constraints.

In addition, the choice of X̄ has to satisfy the cannot-link constraint: for no
two X,Y ∈ X̄ it may be the case that i ∈ X, j ∈ Y, (i, j) ∈ CL.

Algorithm 1 Branch-and-bound(Set: X̄, Set: C̄)

X̄ is the current set of blocks under consideration, C̄ the possible extensions to X̄.

1: C̄ := reduce-candidates(X̄, C̄)
2: if not prunable(X̄, C̄) then
3: Store C̄ in a stack
4: Process X̄ as candidate cluster
5: while C̄ is not empty do
6: C := C̄.pop ()
7: Branch-and-bound (X̄ ∪ {C}, C̄)
8: end while
9: end if

Algorithm. We propose to use a branch-and-bound algorithm to solve this prob-
lem. This algorithm performs a set-enumeration and is given in Algorithm 1
(initialized with Branch-and-bound({}, D/ML)). It uses newly developed prun-
ing strategies to make the search feasible and is easily extended to include a
wide range of constraints. In order to prune candidates, we either remove some
candidates from consideration (line 1) or discard a branch of the search tree
using bounds on the objective function (line 2).

The removal of candidates in line 1 corresponds to propagation in a constraint
programming setting [8]. However, we will show that the proposed bound used
in line 2 is not valid in the presence of arbitrary constraints and hence cannot
be used in general.

4.2 Reducing the number of candidates

We employ three strategies to reduce the set of candidates in line 1 of Algo-
rithm 1:

Cannot-link constraints. The cannot-link constraint is easily taken into account:
when there is a cannot-link constraint between a block in C̄ and a block in X̄,
the block is removed from C̄.

Anti-monotone constraints other than cannot-link constraints are easily in-
cluded as well: if a set X̄ ∪ {C} does not satisfy an anti-monotone constraint,
the candidate C can be removed in line 1.

Block compatibility. Assume that we have a block C1 ∈ X̄ and a block C2 ∈ C̄
and the following holds:

d(C1) + d(C2) + d(C1, C2)

|C1|+ |C2|
− λ(C1)− λ(C2) > 0,

then any cluster X̄ ′ we could build that includes both C1 and C2 can be improved
by removing both C1 and C2:

f(X̄) =
∑

pi∈∪X̄

d(pi, z∪X̄)2 −
∑
X∈X̄

λ(X) ≥

∑
pi∈∪X̄\{C1,C2}

d(pi, z∪X̄\{C1,C2})
2 +

∑
pi∈C1∪C2

d(pi, zC1∪C2
)2 −

∑
X∈X̄

λ(X) ≥

∑
pi∈∪X̄\{C1,C2}

d(pi, z∪X̄\{C1,C2})
2 +−

∑
X∈X̄\{C1,C2}

λ(X). (26)

Note that this argument is only valid in the presence of anti-monotone con-
straints in combination with must-link constraints. We refer to this test as a
compatibility test. When a block in C̄ is incompatible with a block in X̄, the
block is removed from C̄.

4.3 Pruning using a bound on the objective function

For the remaining set of candidates, a more elaborate test is carried out to
determine whether to continue the search (line 2). This test consists of calculating
a bound on achievable solutions and comparing it with the best solution found
so far. A key feature of this bound is that it can be calculated efficiently.

The key idea is as follows. Let X̄ ′ be a set that is found below a set X̄ in the
search tree, that is, X̄ ′ ⊆ C̄ ∪ X̄. We can write its quality as follows:

(d(∪X̄)︸ ︷︷ ︸
old

+
∑

X∈X̄′\X̄

β(X̄,X)

︸ ︷︷ ︸
(1) between old and new

+
∑

X,Y ∈X̄′\X̄

d(X,Y)

︸ ︷︷ ︸
(2) between new blocks

)/
∑

X∈X̄′
|X|

︸ ︷︷ ︸
(3) sizes

−
∑

X∈X̄′
λ(X)

︸ ︷︷ ︸
(4) lambdas

,

where β(X̄,X) = d(X) +
∑

Y ∈X̄ d(X,Y).
Essentially, we need to have a bound on the best X̄ ′. An important first

concern is that we do not know the size of the best X̄ ′ and hence we do not know
term (3). We simplify this problem by iterating over all cluster sizes

∑
X∈X̄ |X| ≤

s ≤
∑

X∈X̄ |X|+
∑

C∈C̄ |C| and calculating a bound on the quality assuming the
best cluster has size s, i.e., we calculate a bound on the above formula assuming
part (3) is iteratively fixed. The overall bound is the best bound among all the
sizes considered.

Calculating a lower bound for a fixed value s of (3) requires a lower bound on
(1) and (2), and an upper bound on (4). We discuss each in turn. A lower bound
on part (1) for a given size s is obtained as follows:

– sort all C ∈ C̄ increasing in their β(X̄, C)/|C| values, yielding order C1, . . . , Cm;

– determine the largest value k such that
∑k

i=1 |Ci| ≤ s;
– determine

∑k
i=1 β(X̄, Ci) as bound.

The argument for this is as follows. All additional points that are selected by the
algorithm above in C1, . . . , Ck are characterized by the β(X̄, C)/|C| value their
corresponding block has. If we sum these characteristic values over all points,
the result is

∑k
i=1 β(X̄, Ci). Choosing the lowest possible characteristic values is

a lower bound as the sum of characteristic values of the points in the optimum
X̄∗, and hence also the value

∑
X∈X̄∗\X̄ β(X̄,X), can never be better.

A similar algorithm can be used to determine an upper bound for term (4):

– sort all C ∈ C̄ decreasing in their λ(C)/|C| values, yielding order C1, . . . , Cm;

– determine the smallest value k such that
∑k

i=1 |Ci| ≥ s;
– determine

∑k
i=1 λ(Ci) as bound.

A simple lower bound on term (2) is that it is always higher than zero. Calcu-
lating a good bound is hard, as we essentially need to solve an edge-weighted
clique problem.

While the overall bound obtained is not very tight, also because term (1) and
term (4) are sorted independently, it has important computational advantages.
First, we can sort the λ(C)/|C| and β(X̄, C)/|C| values before iterating over
potential sizes; hence, we can avoid doing this repeatedly for each size s. Second,
we do not need to consider all sizes s indicated earlier. If we consider the sorted
ranges of λ and β values, there are ranges of sizes in which the bound does not
change; the bound only changes when either a lambda value changes or a β value
changes. It hence suffices to consider 2|C̄| different sizes for s. Finally, we can
maintain the bounds incrementally.

As a result, the overall bound over all sizes s can be calculated inO(|C̄| log |C̄|)
time. As furthermore all required counts can be maintained incrementally in
O(|C̄|) time, the overall time spent in one call of the Branch-and-bound algo-
rithm (excluding recursive calls) is O(|C̄| log |C̄|); in other words, the complexity
of the algorithm is not dependent on the number of points in the data, but only
on the number of blocks that the must-link constraints identify in it.

5 Practical considerations

The column generation approach, in combination with the branch-and-bound
algorithm, provides a fundamental approach for finding optimal solutions under
constraints. However, several practical considerations are of importance when
implementing the column generation approach.

5.1 Initialisation

Initially, there are no columns in the restricted master problem. This means that
Farkas pricing needs to be performed until a feasible solution is found, which
can be time consuming. However, assuming a heuristic solver such as COP-k-
means finds a solution, one can initialize the restricted master problem with this
known (sub-optimal) solution. This avoids the need for Farkas pricing, provides
a number of good initial columns (cuts to the dual problem) as well as an upper
bound for the master problem.

5.2 Branching

Integer linear programs are typically solved by solving a number of LP relax-
ations and using branching to enforce integrality. So far, we have described how
we employ the column-generation method for solving the LP relaxations. In the-
ory, if the solution to the linear program is fractional any type of branching
can be used. In previous work [14] a Ryan-Foster branching scheme was em-
ployed. In this scheme, in the restricted problem two columns are determined
that have a corresponding fractional value and that cover the same data point
(p1). Branching will enforce that in subsequent problems only one of these two
columns can cover that point. Observe that no two columns cover exactly the
same data points and hence they must differ in at least one data point (p2). We
can now branch by enforcing that in one branch points p1 and p2 are in the same
cluster and that in the other branch p1 and p2 are not in the same cluster.

This type of branching naturally fits our approach as it corresponds to adding
a must-link or cannot-link constraint. Compared to [14], the proposed approach
can hence handle both constrained and unconstrained cases in the same princi-
pled manner.

5.3 Slow convergence

Many large-scale column generation approaches suffer from slow convergence.
Similar to [14], we also observed degeneracy in our experiments: even when
given the optimal solution, a large number of column generation iterations is
required before the optimality is proved. We implemented a dual stabilisation
scheme similar to the one of [14]: adding a linear penalisation to the dual ob-
jective corresponds to adding a perturbation variable to each of the constraints
in equation 8 and adding them to the objective function, given in Table 4. Here
yi are the perturbation variables, +/ − µ its bounds and θi its coefficients in
the objective function. The θi form a stabilisation centre in the dual that will
penalize duals that are too far from it. A good choice for θ is the dual λ values
from the best known solution so far. The value of µ has to be progressively de-
creased until 0. At this point, all perturbation variables are 0 and the problem
is identical to the original restricted master problem.

We employ a scheme where the θi are given an equal initial value and µ is
set to 0.99. Each time an optimal solution to the perturbed restricted master
problem is found, the θi values are changed to the duals of that optimal solution
and µ is divided by 2` where ` is a counter of the number of such updates.

6 Experiments

Data was obtained from the UCI machine learning repository [5]. Table 5 lists
the properties of the datasets.

We used the open-source SCIP [1] system as column generation framework.
The branch-and-bound pricer is written in C++. Source code is available at

name # points dimensions # labels

Iris 150 4 3
Wine 178 13 3
Soybean 47 35 4

Table 5. Description of datasets

0

0.01

1

100

10000

R
u

n
 ti

m
e

 (
s)

Number of constaints

3 clusters

5 clusters

Fig 1. Run times on the Iris data set.

http://dtai.cs.kuleuven.be/CP4IM/cccg/. All experiments were run on quad-
core Intel 64 bit computers with 16GB of RAM running Ubuntu Linux 12.04.3.

Constraints were generated according to the common methodology of [23]:
two data points are repeatedly sampled randomly from labelled data; if they have
the same label a ML constraint is generated, otherwise a CL constraint. This
is repeated until the required number of constraints is generated. The code for
generating these constraints and for the COP-k-means algorithm were obtained
from http://www.cs.ucdavis.edu/~davidson/constrained-clustering/ .

It is common practice to run (COP-)k-means multiple times to avoid that it
is stuck in a local minimum. For each setting, we ran COP-k-means 500 times.
The implementation obtained continues until convergence and is not guaranteed
to satisfy all constraints. We will report on the number of runs that satisfy all
constraint (COP sat). Only when at least one solution is found that satisfies all
constraints will we report on its quality (COP max).

We initialized our column generation method with the best solution found
by COP-k-means. Best is here defined by the clustering with the largest number
of clusters satisfying all constraints. Among these clusterings, the one with the
lowest MSS is selected. Note that in case COP-k-means did not find a solution
satisfying all constraints, our column generation method started with the best
infeasible solution. The stabilisation parameter µ was set to 0.99. Initial pertur-
bation values θi can be set to any value; the update mechanism is explained in
Section 3. In case a feasible solution is at hand, a good initial value for θi can
be obtained from bounds on the dual variables. These bounds are calculated
as in [14], and we used the lower bounds of the dual variables to initialize the
corresponding θi.

The branch-and-bound method for solving the subproblem maintains a list
of all clusters that improve the bound during search (including the final best
one). All these clusters are added as columns to the restricted master problem.

Results. We compare the result of our column generation approach to that of
repeated runs of COP-k-means. Our column generation approach is initialized
as explained above, and a time-out of 30 minutes is used.

k=3
#c COP sat COP max CG best

2 100.00% 90.3725 90.3725
60 100.00% 83.6675 83.6675
100 37.20% 87.2082 87.2082
140 0% - 87.8750∗

200 0% - 89.1496∗

240 0% - 85.2477∗

300 0% - 89.3868∗

340 31.40% 89.3868 89.3868∗

400 0% - 89.3868∗

440 31.00% 88.6409 88.6409∗

500 0% - 89.3868∗

k=5
#c COP sat COP max CG best impr.

2 100% 46.5616 46.5616 0%
60 100% 53.399 53.399 0%
100 100% 57.3827 57.3804∗ 0.004%
140 100% 63.1699 62.2115∗ 1.5%
200 100% 71.1401 69.3154∗ 2.56%
240 100% 72.7078 69.9776∗ 3.76%
300 83.6% 82.0819 81.9792∗ 0.13%
340 100% 85.9036 82.9945∗ 3.39%
400 100% 84.0495 84.0357∗ 0.02%
440 100% 82.6373 82.6373∗ 0%
500 100% 85.8908 85.8719∗ 0.02%

Table 6. Clustering with ’#c’ constraints, Iris dataset. *optimality proven

Table 6 shows the quality of the results for the Iris dataset, once for k = 3
(the true number of class labels, left) and once for k = 5 (right); Figure 1 gives
an impression for the amount of run time it took to calculate these results.

A first observation is that in case of k = 3, and a low number of clusters,
COP-k-means easily finds clusterings that satisfy the constraints (indicated by
“COP sat”). For higher numbers of constraints, COP-k-means encounters more
problems finding clusterings satisfying all constraints. In multiple cases none of
the 500 runs finds a clustering satisfying all constraints. When we increase the
number of clusters to k = 5, the constrained clustering problem becomes eas-
ier [9]; as a consequence, COP-k-means can find satisfying solutions more easily.
Even when COP-k-means can not find a solution, our method finds acceptable
clusterings; even optimal ones are found for higher numbers of constraints. The
case of 140 constraints is an exception. For k = 5 and higher numbers of con-
straints, our method can find the optimal constrained clustering.

Table 7 shows the results for the bigger Wine dataset. This dataset is much
harder, both for COP-k-means and for the column generation approach. In case
of k = 3, the true number of class labels, COP-k-means is again rarely able
to find a solution satisfying all constraints. The CG approach is able to find
solutions for some cases, but can not prove them optimal within the time-out.
In case of k = 5 the problem becomes easier, as was the case on Iris. We can see
that the CG approach can sometimes greatly improve the best solution found in
500 COP-k-means runs, even without being able to prove its optimality.

Table 8 shows results on the Soybean dataset, a smaller dataset of higher
dimensionality; its true number of labels is 4. Observe that for k = 3 and 80
constraints, CG is able to prove that this problem is infeasible. The heuristic
COP-k-means simply does not find a solution, as happens for 40 and 60 con-
straints. We further note that in contrast to k = 4, for k = 5 COP-k-means is
often not able to find the optimal solution.

k=3
#c COP sat max CG best

240 0% - 4860250∗

300 0% - 5133144∗

340 0% - 5214981∗

380 0% - 5220299∗

420 0% - 5232632∗

460 0% - 5232632∗

500 0% - 5232632∗

k=5
#c COP sat COP max CG best impr.

240 100% 4021090 3327908∗ 17.24%
300 0% - 4077296∗ +
340 16.6% 4659910 4329603∗ 7.09%
380 66.6% 4729860 4450036∗ 5.92%
420 59.6% 4740180 4537678∗ 4.27%
460 94.2% 4819200 4540041∗ 5.79%
500 15% 4922560 4684355∗ 4.84%

Table 7. Clustering with ’#c’ constraints, Wine dataset. *optimality proven

k=3 k=4 k=5
cons COP sat. CG quality gap COP sat. CG quality gap COP sat. CG quality gap

2 100.00% 0 100.00% 0 100.00% 0.00%
10 100.00% 0 100.00% 0* 100.00% 4.56%*
20 100.00% 0* 100.00% 0.12%* 100.00% 0.29%*
40 0.00% 339* 100.00% 0* 100.00% 1.25%*
60 0.00% 418* 52.60% 0* 81.20% 0.24%*
80 0.00% INF 74.00% 0* 27.00% 0.38%*

Table 8. Soybean, different k and number of clusters (#c); GC quality gap = difference
between best solution quality of cop-kmeans and the solution of CG, INF = infeasible.

7 Related work

We build on a column generation approach first described in [14] and improved
in [4]. This earlier work only studies unconstrained clustering settings. We show
that with modifications it can also be used in the presence of constraints. The
main necessary modification is in the subproblem solver. We use a branch-and-
bound approach that directly solves the subproblem and can be used in the
presence of any constraint that is anti-monotone.

A feature of the first approach [14] is that it uses a heuristic Variable Neigh-
borhoud Search method to solve a subproblem, and only when a solution can
not be found in this way an exact method is used. The exact method uses
Dinkelbach’s lemma [13] to solve equation 23 through a series of unconstrained
quadratic 0-1 problems. The latter are solved using a heuristic VNS combined
with an exact branch-and-bound algorithm for verifying the stopping criterion
of the Dinkelbach method.

This method is improved in [4]. One of these improvements is the introduction
of a compatibility test. We adapted this test for use in the presence of must-link
constraints.

Other exact methods for MSSC are branch and bound methods [18, 12, 7], a
cutting plane algorithm that starts from the observation that MSSC is a concave
optimisation problem [24], dynamic programming [16, 20] and a branch-and-cut
semi-definite programming algorithm [3]. These methods do not consider the
addition of extra constraints.

Exact methods for constrained-based clustering have been studied before.
Typical is that they do not use MSS as optimisation criterion, but rather a
function that is linear or quadratic. Saglam et al. [21] use an integer linear
programming approach for minimizing the maximum cluster diameter. More re-
cently, constraint programming has been used for solving constrained clustering
tasks [8]. A range of constraints is supported including instance-level constraints,
size of cluster constraints and constraints on the separation between clusters and
maximum diameter of a cluster. As objective function the (non-normalized) sum
of squared distances between clusters or maximum diameter is supported.

A large class of clustering methods are those that evaluate the quality of a
cluster based on a cut-value. Also in such methods the use of column generation
has been proposed [17]. The inclusion of constraints in this method may be a
topic for further research.

Exact methods are also used as part of approximate constraint-based clus-
tering methods. Demiriz et al. [11] propose to modify k-means such that the
assignment step, where points are assigned to their nearest feasible cluster, cor-
responds to solving an LP. Constraints on minimum cluster size can be taken
into account, as well as instance level constraints. Davidson et al. studied the
use of SAT solvers, also using diameter as optimization criterion [10]. Müller
and Kramer [19] use integer linear programming to solve constrained clustering
tasks where a fixed number of candidate clusters is given upfront. The problem
consists of selecting the right subset of clusters, which can be compared to solv-
ing one iteration of the restricted master problem. They investigate a number
of different optimisation criterion, as well as constraints at the clustering level,
such as the maximum amount of overlap between clusters or logical formula
over entire clusters. These methods are not guaranteed to find globally optimal
solutions.

8 Conclusions

We proposed a column generation strategy for solving the constrained MSS clus-
tering problem. The main novelty is a branch and bound algorithm that directly
solves the subproblem. Experiments showed its promise: in cases where the COP-
k-means algorithm is not able to find a solution satisfying all constraints even in
500 runs, CG could find solutions and in several cases even prove their optimality.

Several open questions remain. Degeneracy was not a main concern in this
study, however we observe that with the simple stabilisation scheme described in
section 5 the master problem still converges very slowly. It is worth investigating
if advanced stabilisation techniques work better [14]. Furthermore, the pruning
strategy in the branch-and-bound algorithm could be improved and the branch-
and-bound could be expanded to deal with additional constraints.

Acknowledgments. This work was supported by the European Commission under the

project “Inductive Constraint Programming” contract number FP7-284715 and by the

Research Foundation–Flanders by means of two Postdoc grants.

References

1. T. Achterberg. SCIP: solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1–41, 2009.

2. D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of euclidean
sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

3. D. Aloise and P. Hansen. A branch-and-cut SDP-based algorithm for minimum
sum-of-squares clustering. Pesquisa Operacional, 29:503 – 516, 12 2009.

4. D. Aloise, P. Hansen, and L. Liberti. An improved column generation algorithm
for minimum sum-of-squares clustering. Mathematical Programming, 131(1-2):195–
220, 2012.

5. K. Bache and M. Lichman. UCI machine learning repository, 2013.

6. S. Basu, I. Davidson, and K. Wagstaff. Constrained Clustering: Advances in Algo-
rithms, Theory, and Applications. Chapman & Hall/CRC Press, 2008.

7. M. J. Brusco and S. Stahl. Minimum within-cluster sums of squares partitioning. In
Branch-and-Bound Applications in Combinatorial Data Analysis. Springer, 2005.

8. T.-B.-H. Dao, K.-C. Duong, and C. Vrain. A declarative framework for constrained
clustering. In ECML/PKDD (3), pages 419–434, 2013.

9. I. Davidson and S. S. Ravi. The complexity of non-hierarchical clustering with
instance and cluster level constraints. Data Min. Knowl. Discov., 14(1):25–61,
2007.

10. I. Davidson, S. S. Ravi, and L. Shamis. A sat-based framework for efficient con-
strained clustering. In SDM, pages 94–105, 2010.

11. A. Demiriz, K. Bennett, and P. Bradley. Using assignment constraints to avoid
empty clusters in k-means clustering. In Constrained Clustering: Algorithms, Ap-
plications and Theory. Chapman & Hall/CRC, 2008.

12. G. Diehr. Evaluation of a branch and bound algorithm for clustering. SIAM
Journal on Scientific and Statistical Computing, 6(2):268–284, 1985.

13. W. Dinkelbach. On nonlinear fractional programming. Management Science,
13(7):492–498, 1967.

14. O. du Merle, P. Hansen, B. Jaumard, and N. Mladenovic. An interior point algo-
rithm for minimum sum-of-squares clustering. SIAM J. Sci. Comput., 21(4):1485–
1505, Dec. 1999.

15. D. Gondek and T. Hofmann. Non-redundant data clustering. In ICDM, pages
75–82, 2004.

16. R. E. Jensen. A dynamic programming algorithm for cluster analysis. Operations
Research, 17(6):pp. 1034–1057, 1969.

17. E. L. Johnson, A. Mehrotra, and G. L. Nemhauser. Min-cut clustering. Mathe-
matical Programming, 62(1-3):133–151, 1993.

18. W. L. G. Koontz, P. M. Narendra, and K. Fukunaga. A branch and bound clus-
tering algorithm. IEEE Trans. Comput., 24(9):908–915, Sept. 1975.

19. M. Müller and S. Kramer. Integer linear programming models for constrained
clustering. In B. Pfahringer, G. Holmes, and A. Hoffman, editors, Proceedings of
the 13th International Discovery Science DS 2010, pages 159–173. Springer, 2010.

20. B. Os and J. Meulman. Improving dynamic programming strategies for partition-
ing. Journal of Classification, 21(2):207–230, 2004.

21. B. Saglam, F. S. Salman, S. Sayin, and M. Türkay. A mixed-integer programming
approach to the clustering problem with an application in customer segmentation.
European Journal of Operational Research, 173(3):866–879, 2006.

22. A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer,
2003.

23. K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In ICML,
pages 1103–1110, 2000.

24. Y. Xia and J. Peng. A cutting algorithm for the minimum sum-of-squared error
clustering. In SDM, 2005.

