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Abstract—We present MiningZinc, a novel system for con-
straint-based pattern mining. It provides a declarative approach
to data mining, where a user specifies a problem in terms
of constraints and the system employs advanced techniques to
efficiently find solutions. Declarative programming and modeling
are common in artificial intelligence and in database systems,
but not so much in data mining; by building on ideas from
these communities, MiningZinc advances the state-of-the-art of
declarative data mining significantly. Key components of the
MiningZinc system are (1) a high-level and natural language for
formalizing constraint-based itemset mining problems in models,
and (2) an infrastructure for executing these models, which
supports both specialized mining algorithms as well as generic
constraint solving systems. A use case demonstrates the generality
of the language, as well as its flexibility towards adding and
modifying constraints and data, and the use of different solution
methods.

I. INTRODUCTION

The demand for data mining technology is increasing in
many organizations. This includes pattern mining technology,
which is concerned with finding regularities or patterns in data.
However, standard pattern mining algorithms are known to find
overwhelming amounts of patterns; too many to be analyzed by
the user. A well-known technique to overcome this is to let the
user impose additional constraints on patterns [3]. However,
the number of constraints supported by existing systems is typ-
ically limited to a few built-in and well-studied constraints [2].
For example, formalizing data mining problems that involve
multiple data sources at the same time is typically not possible.
What is missing is a general language in which constraints on
patterns can be expressed, as well as the infrastructure to find
the corresponding patterns.

In this paper, we give a demonstration of the current state
of the MiningZinc framework, which we are developing to
address this challenge. The framework consists of two parts: a
language in which pattern mining tasks and constraints can be
formalized, and an infrastructure for executing statements in
this language. Both parts are closely connected to each other
and make the overall system unique.

From the language perspective, the key feature of the
framework is that it builds on constraint programming lan-
guages. Constraint programming languages were developed
for the high-level specification of constraint satisfaction and
optimization tasks. Examples of such languages are Zinc [6]
and Essence [4]. The main reason for building on top of these
languages is that many constraint-based mining problems are

in fact constraint satisfaction and optimization problems, which
makes their formalization in these languages rather natural.
These languages are very general and their applicability has al-
ready been shown in a large number of problems. In particular,
our past work has already shown that constraint programming
systems can be used in data mining [5]. In this study, we chose
to build on top of the Zinc family of languages [6], [7], for
which an infrastructure is already available.

From the infrastructure perspective, the key feature of the
MiningZinc framework is that it supports multiple solution
methods. This includes well-known specialized pattern mining
algorithms, as well as generic constraint solvers developed in
the constraint programming community and used in our earlier
work [5]. This combination of solution methods is unique,
and will allow us to support both a wide range of tasks and
constraints, while also supporting the use of highly efficient
mining algorithms. For a given problem specification expressed
in MiningZinc, our framework can automatically detect which
solution methods are applicable, and can execute these.

We built a web interface to promote the interactive use
of MiningZinc. It allows a user to load data, either from a
file or through an SQL query to a database. The user can
then choose a base mining task (or specify one from scratch)
and add or modify constraints. Applicable solution methods
and the results found are displayed in the same interface. This
promotes an iterative approach where the user can add, remove
or modify existing constraints or data at any time, and easily
compare the resulting patterns found.

The main aim of this paper is to demonstrate the flexible,
iterative approach to pattern mining that MiningZinc offers; it
will show that within this language it is easy to modify known
mining problems, implement new mining problems, and add
data sources.

Within this paper, we will first provide an overview of
the MiningZinc language; subsequently, we will discuss the
architecture of the MiningZinc framework, and illustrate how
it can be used in an iterative fashion.

II. THE MININGZINC LANGUAGE

The MiningZinc language can be used to formulate
constraint-based itemset mining problems. Itemset mining was
introduced by Agrawal et al. [1] and can be defined as follows.
The input consists of a set of tramsactions, each of which
contains a set of items. Transactions are identified by identifiers
S = {1,...,n}; the set of all items is Z = {1,...,m}. An



Listing 1. “Frequent Itemset mining”
int: Nrl; int: NrT; int: Freq;
2 |array[1..NrT] of set of 1..Nrl: TDB;

3 |var set of 1..Nrl: ltems;
4 | constraint card(cover(ltems,TDB)) >= Freq;

5 | solve satisfy;

Listing 2. ”Cover function in MiningZinc”
function var set of int: cover(

(t in Trans <—> Items subset D[t] );
} in Trans;

1

2 var set of int: Items,

3 array[int] of var set of int: D) =
4 let {

5 var set of index_set(D): Trans;

6 constraint forall (t in index_set(D))

7

8

itemset database D maps transaction identifiers to sets of items:
D(t) C I. The frequent itemset mining problem is then defined
mathematically as follows.

Definition 1 (Frequent Itemset Mining): Given an itemset
database D and a threshold Freq, the frequent itemset mining
problem consists of finding all itemsets / C 7 such that
(6p(1)| > Freg, where ¢p(I) = {t|I C D(1)}.

The set ¢p(I) is called the cover of the itemset, and the
threshold Freq the minimum frequency threshold. An itemset
I which has |¢pp(I)| > Freq is called a frequent itemset.

Minimum frequency is one example of a constraint. Our
aim is to develop a language in which on the one hand such
constraints can be expressed in a natural way, while on the
other hand the language is generic enough to express many
other types of constraints. We choose to build on the MiniZinc
constraint programming language for this purpose [7]. It is a
subset of Zinc [6] restricted to the built-in types bool, int, set
and float and user-defined predicates. The main features of
MiniZinc that make it attractive for constraint-based mining is
the high-level mathematical syntax, the ability to add user-
defined predicates and the independence of the language
from solution methods. MiningZinc extends MiniZinc [8] with
libraries of functions and predicates that make it easier to
implement common constraint-based itemset mining tasks.
However, all constraints and primitives present in the generic
MiniZinc language can also be used in MiningZinc, making it
more powerful than other, specialized declarative data mining
systems.

Listing 1 (lines 1 to 5) illustrates the syntax of the language
on the frequent itemset mining problem; more examples are
given later. Lines 1 and 2 are parameters and data, which a
user can provide separate from the actual model. The model
represents the items and transaction identifiers in Z and S by
natural numbers (from 1 to Nrl and 1 to NrT respectively)
and the dataset D by the array TDB, mapping each transaction
identifier to the corresponding set of items. The set of items we
are looking for is represented on line 3 as a set variable with
elements between value 1 and Nrl. The minimum frequency
constraint is posted on line 4; it naturally corresponds to the
formal notation |¢p(I)] > Freq. The cover relation used
on line 4 and shown in Listing 2 is part of the MiningZinc
library and implements ¢p () = {¢t|I C D(¢)}; note that this
constraint is not a hard-coded constraint in the solver, such
as in other systems, but is implemented in the MiningZinc

language itself, and can hence be changed if this is desired.
Finally, line 5 states that it is a satisfaction problem. Enumer-
ating all solutions that satisfy the constraints corresponds to
enumerating all frequent itemsets.

This example demonstrates the appeal of using a modeling
language like MiniZinc for pattern mining: The formulation is
high-level, declarative and close to the mathematical notation
of the problem. Furthermore, the use of user-defined functions
allows us to abstract away concepts that are common when
expressing constraint-based mining problems, as we will see
later.

III. THE MININGZINC INFRASTRUCTURE

The MiningZinc infrastructure is responsible for executing
the MiningZinc models. A key design principle is that it
should be able to run many different solution methods, as
different methods support different kinds of constraints and
have different runtime behavior. This allows us to vary the
efficiency/expressivity trade-off depending on the model spec-
ified by the user: if it only uses standard constraints, one can
use highly efficient itemset mining algorithms such as LCM
[9], while in the case of many complex constraints one will
have to use a constraint solver.

MiniZinc already provides an infrastructure which can be
modified to this purpose. We first discuss the basic MiniZinc
infrastructure, and then how we extended it.

a) The MiniZinc Toolchain: The MiniZinc toolchain
essentially consists of a two-step pipeline with a MiniZinc
model and data as input, and the solution given as output. In the
first step, the data is added to the high-level solver-independent
MiniZinc model and this is compiled into the low-level solver-
dependent FlatZinc language. In the second step, a constraint
solver reads in these predicates and computes the solutions.
An optional third step can pretty-print the solution in a way
specified by the user.

The constraint solvers that are supported in standard
MiniZinc include Constraint Programming (CP) solvers,
Mixed Integer Programming (MIP) solvers and Satisfiability
(SAT) solvers. Depending on the target solver, it is better
to perform different transformations in the compilation of
MiniZinc to FlatZinc. For example, a CP solver can handle
logical constraints natively, while a MIP solver will want
to transform the logical operators into an equivalent integer
programming formulation. This can be achieved by overwriting
the built-in MiniZinc predicates and operators in a separate
library file.

b) MiningZinc specificities: We make extensive use of
the ability to introduce high-level predicates.

Mining-specific libraries. We added libraries to MiniZinc
which define common primitives such as cover and cover_inv.
Different libraries provide different instantiations of these
primitives. For instance, for some CP solvers it is beneficial to
use arrays of boolean variables in the definition of constraints,
while for others a set representation works better. This allows
the system to use efficient low-level encodings of the problems,
while the language remains high-level.

Data Mining algorithms. We also included efficient data
mining algorithms in MiningZinc. This is supported through



a model analysis step in the MiningZinc toolchain. This step
supports the following:

e it recognizes common formalizations of constraint-
based mining problems, including alternative and
equivalent formulations, and pairs this with the mining
algorithm(s) that support this task;

e in a similar fashion, it can deduce whether a subset of
the constraints conform to a common mining task.

The latter feature allows for an automatic hybrid post-
processing approach. Once our model analysis concludes that a
MiningZinc model can partly be solved using a specialized and
efficient mining algorithm, it also recognizes the constraints
which are not supported by that algorithm. It then feeds the
results of the mining algorithm to a generic constraint solver
that can verify whether the remaining constraints are satisfied.

To do the analysis we use the resolution mechanism of
a logic programming system. The FlatZinc predicates are
transformed into facts, and each mining system has rules
that express the combinations of constraints that it supports.
As background knowledge we provided a set of possible
reformulations of individual constraints, as well as common
combinations of constraints. Obtaining the list of supported
solvers then amounts to querying each of the rules of the
mining systems in turn.

IV. INTERFACE DESIGN & MINING EXAMPLES

We integrated the MiningZinc infrastructure in a web-based
interface to make it easy to use. A screenshot of this interface
is given in Figure 1. In it, data can be loaded, MiningZinc
models can be entered, and the results of mining algorithms
can be displayed. We demonstrate its functionality by means
of a simple example in the analysis of movie data stored in a
relational database.

In the first stage of the analysis, the user specifies data
sources such as SQL queries to determine the data that will
be used in the MiningZinc models. The output of each query
is given a name, by which it is accessible in the MiningZ-
inc code. In our example (Figure 1, top), for instance an
ActorsByMovie transaction table is created in which actors
are items in transactions of movies.

The first idea is to run a frequent itemset mining algorithm
to find common combinations of actors. In the input box
below “Model” in Figure 1, the model representing frequent
itemset mining can be entered. In the model displayed in the
screenshot, we also add a minimum size constraint to enforce
that the itemsets found are of reasonable size. Finally, we add
a statement for printing the resulting patterns.

The next step consists of an automatic analysis of the
specified model, triggered by pressing the “Analyze” button.
In this case, the model analysis concludes that the model
requires the specification of two threshold values. The interface
dynamically provides appropriate input boxes to specify these
(under ‘“Parameters”). After pressing the “Analyze” button
again, the system determines which possible solvers can be
used to find the requested patterns. There are two categories:
the general solvers that support arbitrary MiniZinc models and
the specialized data mining solvers. The current infrastructure

Data connections:

Name Type Source
sql: IMDB - i

SELECT movie as Movie, group_concat(actor, '|') as Actor FROM acter_movie GROUP BY movie;

1. ActorsByMovie Transaction Database E

Query:

MoviesByDirector Transaction Database B

sql: IMDB B ﬁ

SELECT director as Director, group_coencat(mavie, '|') as Movie FROM director_movie GROUP BY
Query! grector;

sql: IMDB . i

SELEGT actor as Actor, cast(sum(rating_avg) as integer) FROM movie_rating INNER JOIN
Query: actor_movie ON actor_movie.movie = movie_rating.movie GROUP BY actor;

3. ActorRating Attribute B

Model:

1 include “lib_itemsetmining.mzn";

™~

% Variable definitiens provided by data connectors.

3 int: NrMovie; int: NrActor; int: NrDirector;

4 array [1. NrMovie] of set of 1..NrActor: ActorsByMovie;

5 array [1..NrDirector] of set of 1..NrMovie: MoviesByDirector;
6 array [1..NrActer] of int: ActorRating;
.

)

9

% User-defined model]
var set of 1..NrActor: Actors;
18 var set of 1..NrMovie: Movies;

12  constraint Movies - cover(Actors, ActorsByMovie);
13 constraint Actors = cover_inv(Movies, ActorsByMovie);

15 int: MinFreq; constraint card(Movies) »= MinFreq;
16 int: MinSize; constraint card(Actors) >= MinSize;

18 solve satisfy;
19 output [ show(Actors), " => ", show(Movies) 1;

Parameters:
MinFreq (inf) Set value: i 5
MinSize (inf Setvalue: s 9

General solvers Specialised solvers

Gecode g12, finite gi12, CPX Apriori Eclat (Borgelt) FPgrowth
domain (Borgelt) (Borgelt)
“ closed minsize: 100% covered closed minsize:
s S
—— -
“ LCMv2 LCMvS FIMCP

a12, lazy gi2, MIP

bool_nolin

closed: 75% closed minsize: closed minsize:
covered 100% covered 100% covered

Results

Borgelt Eclat, closed minsize ~ 30 results ~ 0.127s

Bergen, Bob (I) | Cygan, John (1) | Farmer, Bill (I | Harnell, Jess | Lynn, Sherry (I} | Mann, Danny (I) | McGowan, Mickie |
1. Newman, Laraine | Rabson, Jan => Cars (2006) | Horton Hears a Who! (2008) | Ice Age: The Meltdown (2006) | Surf's
Up (2007) | The Lorax (2012)

Coltrane, Robbie | Davis, Warwick (|) | Felton, Tom | Grint, Rupert | Herdman, Josh | Isaacs, Jason | Lewis, Matthew (lIl)
| Murray, Devon (I) | Phelps, James (I) | Phelps, Oliver | Radcliffe, Daniel | Rawlins, Adrian | Rickman, Alan | Somerville,
2. Geraldine | Watson, Emma (1I) | Williams, Mark (1) => Harry Potter and the Chamber of Secrets (2002) | Harry Potter and
the Deathly Hallows: Part 1 (2010) | Harry Potter and the Deathly Hallows: Part 2 (2011) | Harry Potter and the Goblet of
Fire (2005) | Harry Potter and the Order of the Phoenix (2007)
Coltrane, Robbie | Davis, Warwick (|) | Fefton, Tom | Grint, Rupert | Herdman, Josh | Isaacs, Jason | Lewis, Matthew (lII)
| Murray, Devon (1) | Phelps, James (I) | Phelps, Oliver | Radcliffe, Daniel | Rickman, Alan | Somerville, Geraldine |
3. Walters, Julie (I) | Watson, Emma (ll) | Wiliams, Mark (l) => Harry Potter and the Chamber of Secrets (2002) | Harry
Potter and the Deathly Hallows: Part 1 (2010) | Harry Potter and the Deathly Hallows: Part 2 (2011) | Harry Potter and
the Half-Blood Prince (2009) | Harry Potter and the Order of the Phoenix (2007)

Fig. 1. The web interface of the MiningZinc demo.

supports several different itemset mining implementations, all
of which are shown. After the user has selected one of these
options, in the bottom of the interface the patterns are shown.

In this example, it can be seen that we mainly find sets
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of actors that collaborated in movie sequels; the overall list
of patterns found is long. While this is not unsurprising, it
may not be what we are interested in. However, by changing
the SQL queries and the MiningZinc code it is easy to study
alternative mining tasks. Several examples are given below.

Rating-based Constraints. The resulting sets of actors may
only consist of relatively unknown actors. We can attempt
to focus our attention on well-known actors by including
the ratings of movies in our analysis. First, by means of an
SQL query, we calculate the average rating of all movies
that an actor was involved in (as shown in the screenshot);
subsequently, we constrain the search to only those sets of
actors with high average rating. By adding the following lines
of code in the model this is achieved:

array[1..Nrl] of int: actor_rating; int: min_rating;
constraint ( sum(i in Items) (actor_rating[i]) ) /
card(Iltems) >= min_rating;

Director-based Constraints. The most common frequent sets
of actors are those that played in sequels of movies for the
same director. We may wish to exclude sets of actors that
mainly played in such sequels. To obtain this, we can add data
about the directors of the movies, and a constraint that requires
a minimum number of different directors for selected movies.
The following MiningZinc code reflects this and shows that

users can extend models with self-defined constraints:
function var set of int: disj_cover(
var set of int: Items,
array[int] of var set of int: D) =
let { var set of index_set(D): Trans;
constraint forall (t in index_set(D))
(t in Trans <—> Items intersect D[t]
} in Trans;

= {} )

constraint Directors = disj_cover (Movies, MoviesByDirector);
constraint card(Directors) >= FreqD;

Discriminative itemset mining. We could limit the number of
results further by focusing on itemsets that optimize a given
ranking function. One such ranking function is accuracy in
data with multiple classes of examples. In our movie example,
we can obtain two classes of movies by using different SQL
queries: one extracts those movies with low ratings and the
other those with high ratings. They can be stored in different
data matrices (D_good and D_bad). The following MiningZ-
inc code only searches for sets of actors that maximize the
accuracy score on these classes of examples:

array[int] of set of int: D_good;
array[int] of set of int: D_bad;

var set of 1..Nrl: ltems;
constraint Items = cover_inv(
cover (ltems ,D_good) ,D_good);

% Optimization function

var int: Score = card(cover(ltems, D_good)) —
card(cover(ltems, D_bad));

solve maximize Score;

In line 7 the accuracy scoring function is expressed; line 9
specifies that we only wish to find solutions that optimize the
score. Finally, in line 4 we add an additional constraint that
limits the attention to closed itemsets, which are essentially
the longest itemsets that optimize the score.

More. A user can continue analyzing the data by adding
constraints and/or data and changing the problem specification.

V. CONCLUSIONS

Our demo shows that itemset mining problems can be mod-
eled in a generic constraint modeling language in a natural way.
Furthermore, it shows that an infrastructure can be developed
which supports both generic and specialized solvers. A web
interface offers easy access to the different components: adding
data sources, writing the problem specification, choosing a
solver and viewing the results.

MiningZinc, as presented here, is only a starting point.
Several interesting challenges remain. A first challenge is that
of solver selection. Our current infrastructure may recognize
which solvers can be applied, but it does not automatically
select one. For many end-users this would be beneficial.
In general, the current library only supports itemset mining
primitives. For a broader applicability in data mining, other
primitives should be added, including statistical primitives.
From the infrastructure point of view, this would require a
wider range of data mining systems to be integrated as well.
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