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Abstract. Data centers are a critical and ubiquitous resource for pro-
viding infrastructure for banking, Internet and electronic commerce. One
way of managing the data centers efficiently is to minimize a cost function
that takes into account the load of the machines, the balance among a set
of available resources of the machines, and the costs of moving processes
while respecting a set of constraints. This problem is called machine re-
assignment problem. An instance of this online problem can have several
tens of thousands of processes. Therefore, the challenge is to solve a very
large size instance in a very limited time. In this paper, we describe a
constraint programming based Large Neighborhood Search (LNS) ap-
proach for solving this problem. The values of the parameters of LNS
can have a significant impact on the performance of LNS when solving
an instance. We, therefore, employ the Instance Specific Algorithm Con-
figuration methodology, where a clustering of the instances is maintained
in the offline phase and the parameters of LNS are automatically tuned
for each cluster. When a new instance arrives the values of the parame-
ters of the closest cluster are used for solving the instance in the online
phase. Results confirm that our CP-based LNS approach with high qual-
ity parameter settings finds good quality solutions for very large size
instances in very limited time. Our results also significantly outperform
the hand-tuned settings of the parameters selected by a human expert.

1 Introduction

Data centers are a critical and ubiquitous resource for providing infrastructure
for banking, Internet and electronic commerce. They use enormous amount of
electricity, and this demand will certainly increase in the future. For example,
the report of EU Stand-by Initiative stated that in 2007 Western European data
centers consumed 56 Tera-Watt Hours (TWh) of power, which is expected to
almost double to 104 TWh per year by 2020.1 A typical optimization challenge
in the domain of data centres is to consolidate machine workload to ensure that
machines are well utilized so that energy costs can be reduced. In general, the
management of data centers provides a rich domain for constraint programming,
and combinatorial optimization [15, 13, 17, 16].
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Context. Given the growing level of interest from the optimization community
in data center optimization and virtualization, the 2012 ROADEF Challenge was
focused on machine reassignment, a common task in virtualization and service
configuration on data centers.2 Informally, the machine reassignment problem is
defined by a set of machines and a set of processes. Each machine is associated
with a set of available resources, e.g. CPU, RAM etc., and each process is asso-
ciated with a set of required resource values and a currently assigned machine.
There are several reasons for reassigning one or more processes from their current
machines to different machines. For example, if the load of the machine is high,
then one might want to move some of the processes from that machine to other
machines. Similarly, if the machine is about to shut down for maintenance then
one might want to move all the processes of the machine. Also, if there exists
a machine in a different location where the electricity price is cheaper then one
might want to reassign processes to the machines such that the cost of electricity
consumption is reduced. In general, the task is to reassign the processes to ma-
chines while respecting a set of hard constraints in order to improve the usage
of the machines, as defined by a complex cost function.

Contributions of this Paper. The machine reassignment problem is one that
needs to be solved in an online manner. The challenge is to solve a very large
size problem instance in a very limited time. In order to do so, we formulate the
problem using Constraint Programming (CP) as described in [10], and use Large
Neighborhood Search (LNS) to solve it. The basic idea of CP-based LNS is to
repeatedly consider a subproblem, which defines a candidate neighborhood, and
re-optimize it using CP. In the machine reassignment problem context, we select
a subset of processes and reassign machines to them. In this paper we describe
our CP-based LNS approach in detail.

There are several parameters to choose when implementing LNS, e.g., size of
the neighborhood, when to change the neighborhood size, threshold in terms of
time/failures for solving a subproblem etc. The values of these parameters can
have a significant impact on the efficiency of LNS. We expose the parameters of
our CP-based LNS approach, and study the impact of these parameters on LNS.

It is well known that manually tuning a parameterized solver can be very
tedious and often consume lot of time. Moreover, manual tuning rarely achieves
maximal potential in terms of performance gains. Therefore, we study the appli-
cation of Gender-based Genetic Algorithm (GGA) for configuring the parameters
automatically [2]. Experimental results show that the performance of the LNS
solver tuned with GGA improves significantly when compared with the manually
tuned LNS solver3. Furthermore, it is important to note that while tuning the
parameters of GGA takes a lot of computational resources, it is still far faster
than manual tuning. Additionally, GGA is an automated process that can be run
in the background, thus releasing developers to focus their efforts on developing
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3 The manually tuned solver was runner up in 2012 ROADEF challenge and the dif-
ference between the first and the second was marginal.



new algorithms rather than manually trying with parameters. Finally, the initial
computational expenditure is further mitigated by the fact that the machine
reassignment problem will be solved repeatedly in the future, so the gains made
by tuning are multiplied over time as the system is used in practice.

In the real world setting one can anticipate that the instances of the machine
reassignment problem may differ from time to time. Thus, it is possible that
one setting of parameters might not result in the best possible performance of
the LNS solver across all possible scenarios. We, therefore, propose a method-
ology where in the offline phase a system continuously maintains a clustering
of the instances and the LNS solver is tuned for each cluster of instances. In
the online phase, when a new instance arrives the values of the parameters of
the closest cluster are used for solving the instance. For this we study the ap-
plication of Instance-Specific Algorithm Configuration (ISAC) [9]. Experimental
results confirm that this further improves the performance of the LNS solver
when compared with the solver tuned for all the instances with GGA. Over-
all the experimental results suggest that the proposed CP-based LNS approach
with the aid of learning high quality parameter settings can find a good quality
solution for a very large size instance in a very limited time.

The current computer industry trend is toward creating processor chips that
contain multiple computation cores. If tuning the parameters of LNS solver man-
ually for single-core machine is tedious, then tuning for multiple parameteriza-
tion that would work harmoniously on multiple cores machine is even more
tedious. We present an approach that can exploit multiple cores and can provide
an order of magnitude improvement over manually configured parameters.

The paper is organized as follows: The machine reassignment problem is
briefly described in Section 2 followed by the LNS used for solving this problem
in Section 3. Section 4 describes how the parameters of LNS are tuned, and
Section 5 presents experimental results followed by conclusions in Section 6.

2 Machine Reassignment Problem

In this section, we briefly describe the machine reassignment problem of ROADEF-
EURO Challenge 2012 in collaboration with Google4. Let M be the set of ma-
chines and P be the set of processes. A solution of the machine reassignment
problem is an assignment of each process to a machine subject to a set of con-
straints. The objective is to find a solution that minimizes the cost of the re-
assignment. In the following we describe the constraints, various types of costs
resulting from the assignment, and the objective function.

2.1 Constraints

Capacity Constraints. The usage by a machine m of resource r, denoted by
umr, is equal to the sum of the amount of resource required by processes which
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are assigned to machine m. The usage by a machine of a resource should not
exceed the capacity of the resource.
Conflict Constraints. A service is a set of processes, and a set of services
partition the set of processes. The constraint is that the processes of a service
should be assigned to different machines.
Spread Constraints. A location is a set of machines, and a set of locations
partition the set of machines. These constraints ensure that processes of a service
should be assigned to the machines such that their corresponding locations are
spread over at least a given number of locations.
Dependency Constraints. A neighborhood is a set of machines and a set of
neighborhoods also partition the machines. The constraint states that if service s
depends on service s′, then the set of the neighborhoods of the machines assigned
to the processes of service s must be a subset of the set of the neighborhoods of
the machines assigned to the processes of service s′.
Transient Usage Constraints. When a process is moved from one machine
to another machine, some resources, e.g., hard disk space, are required in both
source and target machines. These resources are called transient resources. The
transient usage of a machine m for a transient-resource r is the sum of the
amount of resource required by processes whose original or current machine is
m. The transient usage of a machine for a resource should not exceed its capacity.

2.2 Costs

The objective is to minimize the weighted sum of load, balance, and move costs.
Load Cost. The safety capacity limit provides a soft limit, any use above that
limit incurs a cost. Let scmr be the safety capacity of machine m for resource r.
The load cost for a resource r is equal to

∑
m∈M max(0, umr − scmr).

Balance Cost. Having CPU resource without having RAM resource on a ma-
chine is useless. To balance the availability of resources, a balance b can be defined
by a triple of resources r1

b and r2
b , and a multiplier tb. For a given triple b, the

balance cost is
∑

m∈M max(0, tb ·A(m, r1
b )−A(m, r2

b )) with A(m, r) = cmr−umr.
Move Cost. The process move cost is the sum of the costs of moving processes
from their original machines to different machines. The service move cost is
defined as the maximum number of processes moved among services.

2.3 Instances

Table 1 shows the features of the machine reassignment Feature Limit
Machines 5000
Processes 50000
Resources 20
Services 5000

Locations 1000
Neighborhoods 1000
Dependencies 5000

Table 1. Features

problem and their limits on the instances of the problem
that we are interested in solving. As this is an online prob-
lem, the challenge is to solve very large size instances in
a very limited time. Although the time limit for the com-
petition was 300 seconds, we restrict the runtime to 100
seconds as we are solving more than 1000 instances with
numerous parameter settings of the LNS solver.
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Fig. 1. Principles of the CP-based LNS approach

3 Large Neighborhood Search

We formulated the machine reassignment problem using Constraint Program-
ming (CP), which is described in [10]. We used Large Neighborhood Search for
solving the instances of the problem. In this paper we omit the details of the CP
model and we focus on the details of our LNS approach for solving this problem.
In particular we focus on the parameters of the LNS solver that are carefully
tuned for solving the problem instances efficiently.

LNS combines the power of systematic search with the scaling of local search.
The overall solution method for CP-based LNS is shown in Figure 1. We maintain
a current assignment, which is initialized to the initial solution given as input.
At every iteration step, we select a subset of the processes to be reassigned, and
accordingly update the domains of the variables of the CP model. We solve the
resulting CP problem with a threshold on the number of failures, and keep the
best solution found as our new current assignment.

3.1 Selecting a Subproblem

In this section we describe how a subproblem is selected. Our observation is that
selecting a set of processes for reassignment from only some machines is better
than selecting them from many machines. The reason is that if we select only
a few processes from many machines, then we might not free enough resources
from the machines for moving the processes with large resource requirements
from their original machines. Therefore, our subproblem selection is a two step
process. First we select a set of machines and then, from each selected machine,
we select a set of processes to be reassigned.

The number of machines that are selected in a given iteration is denoted by
km. The maximum number of processes that are selected for reassignment from
each selected machine is denoted by kp. Both km and kp are non-zero positive
integers. The values of km and kp can change during iterations of LNS. They are
decided based on the several parameters of the LNS solver.

The number of processes that can be selected from one machine is bounded
by an integer parameter, which is denoted by up. Therefore, kp ≤ up. The total



number of processes that can be selected for reassignment is bounded by an
integer parameter, which is denoted by tp. Therefore, km · kp ≤ tp.

If all the processes of a machine are selected then many of them might be
reassigned to their original machines again. Therefore, we enforce that the num-
ber of processes selected from a given machine should be less than or equal to
some factor of the average number of processes on a machine. More precisely,
kp ≤ rp · (|P |/|M |). Here rp is a continuos parameter.

Initially km is set to 1. As search progresses, it is incremented when a certain
number of iterations in LNS are performed consecutively without any improve-
ment in the quality of the solution. The maximum value that can be set to km
is denoted by tm. We re-initialize km to 1 when it exceeds tm.

Notice that fewer processes on a machine implies fewer combinations of the
processes that can be selected from the machine for reassignment and hence fewer
possible subproblems that can be created from the selected machines. Therefore,
the bound on the number of consecutive non-improving iterations is obtained
by multiplying the average number of processes on a machine (i.e., |P |/|M | ) by
a continuous parameter, which is denoted by rm. The value of rm is bounded
within 0.1 and 10. Different values of the parameters up, tp, rp, tm, and rm
results in different size of subproblems which can have a significant impact on
the efficiency of CP-based LNS approach.

3.2 Creating the Subproblem

When solving a problem using LNS, the conventional way of creating a subprob-
lem is to reinitialize all the domains of all the variables, reassign the machines
to the processes which are not chosen for reassignment, and perform constraint
propagation. This way of creating a subproblem can be a bottleneck for LNS
when we are interested in solving a very large size problem in a very limited
time. Furthermore, if the size of the subproblem is considerably smaller than
the size of the full problem then the number of iterations that one would like to
perform will increase in which case the time spent in creating the subproblems
will also increase further.

For example, let us assume that the total number of processes is 50000, the
number of machines is 1000, and the maximum number of processes selected for
reassignment for each iteration is 100. If we want to consider each process at
least once for reassignment then we need at least 500 iterations. Assuming that
the time-limit is 100 seconds, on average 0.2 second will be spent on each iter-
ation. It is recalled that each iteration would involve selecting 100 processes for
reassignment, reseting more than 50000 variables to their original domains, freez-
ing 49900 variables, performing constraint propagation, and finally re-optimizing
the subproblem. One can envisage that in this kind of scenario time spent for
creating subproblems can be a significant part of solving the problem.

This drawback is mainly because a CP solver is typically designed for sys-
tematic search. At each node of the search tree, a CP solver uses constraints
to remove inconsistent values from the domains, and it uses trailing or copying



with recomputation for restoring the values. Both trailing and copying with re-
computation techniques are efficient for restoring the domains when an ordering
is assumed on the way decisions are undone. However, in LNS one can move
from one partial assignment to another by undoing any subset of decisions in
an arbitrary order. Therefore, if an existing CP solver is used for LNS then
un-assigning a set of processes would result in backtracking to the node in the
search tree where all the decisions made before that node are still in place, and
in the worst-case this could be the root node.

We propose a novel approach for creating the subproblem. The general idea
is to use constraints to determine whether a removed value can be added to the
current domain when a set of assignments are undone. Instead of using trailing
or copying, we maintain two sets of values for each variable: (1) the set of values
that are in the current domain of the variable, and (2) the set of values that
are removed from the original domain. Additionally, we also maintain two sets
of variables: (1) a set of variables whose domains can be replenished, and (2)
and a set of variables whose domains cannot be replenished. In each iteration,
the former is initialized by the variables whose assignments are undone and the
latter is initialized by the variables whose assignments are frozen. A variable
whose domain cannot be replenished is also called a reduced variable.

The domain of a variable is replenished by checking the consistency of each
removed value with respect to the constraints that involve reduced variables.
Whenever a domain is replenished the variable is tagged as a reduced variable,
its neighbors which are not reduced-variables are considered for replenishing their
domains, and constraint propagation is performed on the problem restricted to
the set of reduced variables. A fixed point is reached when no variable is left for
replenishment. This approach is called replenishing the domains via incremental
recomputation. Notice that the existing CP-solvers do not provide support for
replenishing domains via incremental re-computation. The main advantage of
this approach is that it is not dependent on the order of the assignments and
therefore it can be used efficiently to create subproblems during LNS.

3.3 Reoptimizing the Subproblem

We use systematic search with a threshold on the number of failures for solv-
ing a given subproblem. The value of the threshold is obtained by multiplying
the number of processes that are selected for reassignment with the value of a
continuous parameter, which is denoted by tf . The value of tf ranges between
0.1 and 10. At each node of the search tree constraint propagation is performed
to reduce the search space. The variable ordering heuristic used for selecting a
process is based on an aggregation of the following information: (a) increment in
the objective cost when assigning a best machine to a process, (b) total weighted
requirement of a process which is the sum of the weighted requirements of all
resources, and (c) the number of machines available for a process. The value
ordering heuristic for selecting a machine for a given process is based on the
minimum cost while ties are broken randomly.



4 Tuning Parameters of LNS

While it is possible to reason about certain parameters and their effect on the
overall performance individually, there are numerous possible configurations that
these parameters can take. The fact that these effects might not be smoothly
continuous or that there may be subtle non-linear interactions between param-
eters complicates the problem further. Augment this with the time incurred at
trying certain parameterizations on a collection of instances, and it becomes
clear why one can’t be expected to tune the parameters of the solver manually.

Table 2. Parameters of LNS for Machine Reassignment Problem

Notation Type Range Description

up Integer [1, 50] Upper bound on the number of processes that can be
selected from one machine for reassignment

tp Integer [1, 100] Upper bound on the total number of processes that can
be selected for reassignment

rp Continuous [0.1, 1] Fraction of the average number of processes on a machine

tm Integer [2, 25] Upper bound on the number of machines selected for
subproblem selection

rm Continuous [0.1, 10] Ratio between the upper bound on the consecutive non-
improving iterations and the average number of processes
on a machine

tf Continuous [0.1, 10] Ratio between the threshold on the number of failures
and the total number of processes selected for reassign-
ment

In the case of our LNS solver, Table 2 lists and explains the parameters
that can be controlled. Although there are only six parameters, because half of
them are continuous and have large domains, it is impractical to try all possible
configurations. Furthermore, the parameters are not independent of each other.
To test this, we gathered a small set of 200 problem instances and evaluated
400 randomly selected parameter settings on this test set. Then, using the av-
erage performance on the data set as our evaluation metric and the parameter
settings as attributes, we ran feature selection algorithms from Weka [5]. All
the attributes were found as important. Adding polynomial combinations of the
parameter settings, further revealed that some pairs of parameters were more
important than others when predicting expected performance.

Because of the difficulty of fully extracting the interdependencies of the pa-
rameters and covering the large possible search space, a number of automated al-
gorithm configuration and parameter tuning approaches have been proposed over
the last decade. These approaches range from gradient-free numerical optimiza-
tion [3], gradient-based optimization [4], iterative improvement techniques [1],
and iterated local search techniques like FocusedILS [7].

One of the more successful of these approaches is the Gender-based Genetic
Algorithm (GGA) [2], a highly parallelizable tool that is able to handle con-



Algorithm 1 Instance-Specific Algorithm Configuration

1: ISAC-Learn(A, T, F, κ)
2: (F̄ , s, t)← Normalize(F )
3: (k, C, S)← Cluster (T, F̄ , κ)
4: for all i = 1, . . . , k do
5: Pi ← GGA(A,Si)
6: return (k, P,C, s, t)

1: ISAC-Run(A, x, k, P, C, d, s, t)
2: f ← Features(x)
3: f̄i ← 2(fi/si)− ti ∀ i
4: i← mini(||f̄ − Ci||)
5: return A(x, Pi)

tinuous, discrete, and categorical parameters. Being a genetic algorithm, GGA
starts with a large population of possible parameter configurations. This pop-
ulation is then split evenly into two groups: competitive and noncompetitive.
The members of the competitive set are further broken up into tournaments
where the parameterizations in each tournament are raced on a subset of train-
ing instances. The best performing parameter settings of each tournament get
the chance to crossover with the members of the noncompetitive population and
continue to subsequent generations. In the early generations, each tournament
has only a small subset of the instances, but the set grows each generation as the
bad parameter settings get weeded out of consideration. In the final generation
of GGA, when all training instances are used, the best parameter setting has
been shown to work very well on these and similar instances.

General tuning of a solvers’ parameters with tools like GGA, however, ignores
the common finding that there is often no single solver that performs optimally
on every instance. Instead, different parameter settings tend to do well on differ-
ent instances. This is the underlying reason why algorithm portfolios have been
so successful in SAT [19, 8], CP [12], QBF [14], and many other domains. These
portfolio algorithms try to identify the structure of an instance beforehand and
predict the solver that will have the best performance on that instance.

ISAC [9] is an example of a very successful non-model based portfolio ap-
proach. Unlike similar approaches, such as Hydra [18] and ArgoSmart [11], ISAC
does not use regression-based analysis. Instead, it computes a representative fea-
ture vector in order to identify clusters of similar instances. The data is there-
fore clustered into non-overlapping groups and a single solver is selected for each
group based on some performance characteristic. Given a new instance, its fea-
tures are computed and it is assigned to the nearest cluster. The instance is then
evaluated with the solver assigned to that cluster.

ISAC works as follows (see Algorithm 1). In the learning phase, ISAC is
provided with a parameterized solver A, a list of training instances T , their cor-
responding feature vectors F , and the minimum cluster size κ. First, the gathered
features are normalized so that every feature ranges from [−1, 1], and the scaling
and translation values for each feature (s, t) is memorized. This normalization
helps keep all the features at the same order of magnitude, and thereby keeps
the larger values from being given more weight than the lower values. Then, the
instances are clustered based on the normalized feature vectors. Clustering is
advantageous for several reasons. First, training parameters on a collection of



New
Instance

Current
Instances

Initial
Instances

Cluster

Cluster

Is difference
between

clusterings
significant

Create clusters by
adding instance

to the best luster

Current
clusters

Tune
parameters

for each
cluster

Yes

Fig. 2. Offline Phase

instances generally provides more robust parameters than one could obtain when
tuning on individual instances. That is, tuning on a collection of instances helps
prevent over-tuning and allows parameters to generalize to similar instances.
Secondly, the found parameters are “pre-stabilized,” meaning they are shown to
work well together.

To avoid specifying the desired number of clusters beforehand, the g-means [6]
algorithm is used. Robust parameter sets are obtained by not allowing clusters
to contain fewer than a manually chosen threshold, a value which depends on
the size of the data set. In our case, we restrict clusters to have at least 50
instances. Beginning with the smallest cluster, the corresponding instances are
redistributed to the nearest clusters, where proximity is measured by the Eu-
clidean distance of each instance to the cluster’s center. The final result of the
clustering is a number of k clusters Si, and a list of cluster centers Ci. Then,
for each cluster of instances Si, favorable parameters Pi are computed using the
instance-oblivious tuning algorithm GGA.

When running algorithm A on an input instance x, ISAC first computes the
features of the input and normalize them using the previously stored scaling and
translation values for each feature. Then, the instance is assigned to the nearest
cluster. Finally, ISAC runs A on x using the parameters for this cluster.

In practice however, the tuning step of the ISAC methodology can be very
computationally expensive. Fortunately it is not necessary to retune the algo-
rithms too frequently. In many cases, even when new instances become available,
the clusters are not likely to shift. We therefore propose the methodology shown
in Figure 2. Here, given a set of initial instances, we perform the ISAC method-
ology to find a set of clusters for which the algorithm is tuned. When we observe
new instances, we evaluate them according to the ISAC approach as shown in
Figure 3, and afterwards add the instance to the appropriate cluster. But we also
try re-clustering the entire set of instances. In most cases, the two clusterings
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will be similar, so nothing needs to be changed. But as we gather more data, we
might see that one of our clusters can be refined into two or more new clusters.
When this occurs, we can then retune the LNS solver as needed.

5 Experimental Results

In this section we present results of solving machine reassignment problem CP-
based LNS approach. We study three different ways of tuning the LNS solver.
The first approach is the manually tuned LNS solver, denoted by Default, which
was runner up in 2012 ROADEF challenge. The second approach is the LNS
solver tuned using the GGA algorithm, which is denoted by GGA, and the final
approach is the LNS solver tuned using ISAC, which is denoted by ISAC. The
LNS solver for machine reassignment problem is implemented in C.5

In order to perform experiments in training and test phases we generated 1245
instances which were variations on the set B instances used in the final phase of
the ROADEF competition.6 For each original instance we perturb the number
of resources, the number of transient resources, the number of balances, weights
of the load costs for resources, weights of balance costs, weights of process-move,
machine-move cost and service-move costs. More precisely, for each original in-
stance with |R| number of resources, we randomly select k resources. The value
of k is also chosen randomly such that 3 ≤ k ≤ |R|. Out of k selected resources,
a set of t resources are selected to be transient such that 0 ≤ t ≤ k/3. The
set of balances is also modified in a similar way. The original weight associated
with each load-cost, balance-cost or any move-cost is randomly multiplied with
a value selected randomly from the set {0.5, 1, 2}. All problems instances used in
our experiments are available online.7 The generated dataset was split to contain

5 http://sourceforge.net/projects/machinereassign/
6 http://challenge.roadef.org/2012/en/index.php
7 http://4c.ucc.ie/~ymalitsky/
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745 training instances and 500 test instances. All the experiments were run on
Linux 2.6.25 x64 on a Dual Quad Core Xeon CPU machine with overall 12 GB
of RAM and processor speed of 2.66GHz.

For evaluation of a solver’s performance, we used the metric utilized for the
competition:

ScoreS(I) = (Cost(S)− Cost(B))/Cost(R).

Here, I is the instance, B is the best observed solution using any approach, R
is the original reference solution, and S is the solution using a particular solver.
The benefit of this evaluation function is that it is not influenced by some in-
stances having a higher cost than others, and instead focuses on a normalized
value that ranks all of the competing approaches. We rely on using the best
observed cost because for most of the instances it is not possible to find the op-
timal cost. We remark that on average the best observed cost reduces the initial
cost by 65.78%, and if we use the lower-bound then it reduces the initial cost
by 66.98%. This demonstrates the effectiveness of our CP-based LNS approach
for finding good quality solutions in 100 seconds. Notice that the lower-bounds
were computed based on the load-costs and the balance-costs by aggregating the
resource requirements over all processes and (safety) capacities over all machines.

When tuning the LNS solver using GGA/ISAC, we used the competition’s
evaluation metric as the optimization criterion. However, to streamline the eval-
uations, we approximated the performance of the best solver using the perfor-
mance achieved by running the LNS solver with default parameters for 1 hour.



Standard Deviation

C1

C2

C3C4

C5

C6

C7

C8 C9

C10

−1 0 1 2 3 4 5 6

Default
GGA
ISAC

Fig. 5. Standard deviations of each cluster for Default, GGA and ISAC approaches

While this caused some of the scores to be negative during training, this ap-
proximation still correctly differentiated the best solver while avoiding placing
more weight on instances with higher costs. In order to cluster the instances for
ISAC, we used the features listed in Table 1. All these features are available in
the problem definition so there is no overhead in their computation. When we
clustered the instances using g-means with a minimal cluster size of 50, we found
10 clusters in our training data.

The performances of the learned parameterizations from the Default, GGA
and ISAC methodologies is compared in Figures 4 and 5. Specifically, we map the
average performance of each method on the instances in each of the 10 discovered
clusters. What we observe is that even though the default parameters perform
very close to as well as they can for clusters 4, 5, 6 and 7, for clusters 2, 8 and
10 the performance is very poor. Tuning the solver using GGA can improve the
average performance dramatically. Furthermore, we see that if we focus on each
cluster separately, we can further improve performance, highlighting that differ-
ent parameters should be employed for different types of instances. Interestingly,
we observe that ISAC also dramatically improves on the standard deviation of
the scores (in Figure 5), suggesting that the tuned solvers are consistently better
than the default and GGA tuned parameters.

The current trend is to create computers with an ever increasing number of
cores. It is unusual to find single core machines still in use, with 2, 4 or even 8
cores becoming common place. It is for this reason that we also experimented
scenarios where more than one core is available for running the experiments. For



Table 3. Mean scores of the test data using Default, GGA, and ISAC approaches
evaluated for 1, 2 and 4 cores. The standard deviations are presented in parentheses.

Approach Number of Cores
1 2 4

Default 0.931 (2.759) 0.843 (2.596) 0.784 (2.541)
GGA 0.357 (0.808) 0.283 (0.663) 0.214 (0.529)
ISAC 0.259 (0.623) 0.151 (0.363) 0.095 (0.237)

Table 4. Average score on set B instances using Default, GGA, and ISAC trained
parameterizations for 1, 2 and 4 cores. The standard deviations are in parentheses.

Approach Number of Cores
1 2 4

Default 0.171 (0.268) 0.159 (0.261) 0.119 (0.211)
GGA 0.296 (0.416) 0.288 (0.417) 0.202 (0.285)
ISAC 0.137 (0.224) 0.109 (0.184) 0.065 (0.120)

Default and GGA, we ran the same parameters multiple times using different
seeds, taking the best performance of 1, 2 and 4 trials. For ISAC however, we
used the training data to pick which 1, 2, or 4 parameter settings associated
with which clusters should be used for running the LNS solver in parallel. ISAC
had the opportunity to choose from the 10 parameterizations found for each
cluster plus the parameters of Default and GGA tuned solvers. It is important
to note here that, although ill advised, it might be possible to argue manually
playing with parameters for a single core. However, a human is incapable of
finding multiple parameterizations that would work harmoniously together. In
order to make effective use of multiple cores, automated tuning is essential.

Table 3 shows that ISAC always dominates. While adding more cores is not
particularly helpful for Default and GGA, ISAC can dramatically benefit from
the additional computing power. And as can be seen from the reduction of the
standard deviation, the ISAC tuned solvers are consistently better. Running t-
tests on all the results, the benefits of GGA over default are always statistically
significant, as are the gains of ISAC over GGA. The detailed mean scores per
cluster for various numbers of available cores for ISAC are presented in Figure 6.

Table 4 present results for 10 instances of set B which were used in the
final phase of the competition. As the Default LNS is manually trained for set B
instances, it is not surprising to see that the average score for set B is signficantly
less than that obtained for 500 instances of test data. This demonstrates that the
Default parameters have been over-tuned and because of that the performance
of Default is poor on the test data. On the other hand the average score of GGA
for test instances and for set B instances is very closeby. This demonstrates that
the parameters of GGA are more stabilized, and therefore overall they work
well for both test instances andset B instances. Table 3 shows that ISAC always
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Fig. 6. Mean scores of each cluster ISAC approach for 1,2,4 and 8 cores.

dominates for set B instances. This confirms that for different types of instances
different values of LNS parameters can help in solving problems more efficiently.

6 Conclusions

We have presented an effective constraint programming based Large Neighbor-
hood Search (LNS) approach for the machine reassignment problem. Results
shows that our approach is scalable, and it is suited for solving very large in-
stances, and has good anytime-behavior which is important when solutions must
be reported subject to a time limit. We show that by exposing parameters we are
able to create an easily configurable solver. The benefits of such a development
strategy are made evident through the use of automatic algorithm configuration.
We show that an automated approach is able to set the parameters much more
effectively than a human expert. We further show that not all machine reas-
signment instances are the same, and that by employing the Instance-Specific
Algorithm Configuration methodology we are able to improve the performance
of our proposed approach. These gains are especially significant because even
though tuning can take significant computational resources, it frees developers
to focus their work on improving the algorithms. Furthermore, the tuning step
is an initial cost that is quickly mitigated by the repeated usage of the learned
parameters over a prolonged period of time. Finally, we show that by taking ad-
vantage of the increasing number of cores available on machines, we can provide
an order of magnitude improvement over using manually configured parameters.
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