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Abstract. Combining differing solution approaches by means of solver
portfolios has proven as a highly effective technique for boosting solver
performance. We consider the problem of generating parallel SAT solver
portfolios. Our approach is based on a recently introduced sequential
SAT solver portfolio that excelled at the last SAT competition. We show
how the approach can be generalized for the parallel case, and how obsta-
cles like parallel SAT solvers and symmetries induced by identical proces-
sors can be overcome. We compare different ways of computing parallel
solver portfolios with the best performing parallel SAT approaches to
date. Extensive experimental results show that the developed methodol-
ogy very significantly improves our current parallel SAT solving capabil-
ities.

1 Introduction and Related Work

In the past decade, solver portfolios have boosted our capability to solve hard
combinatorial problems. Portfolios of existing solution algorithms have excelled
in competitions in satisfiability (SAT), constraint programming (CP), and quan-
tified Boolean formulae (QBF) [8, 12, 14].

In the past years, a new trend has emerged, namely the development of
parallel solver portfolios. The gold-winning ManySAT solver [6] is, when we
ignore features like clause-sharing, a static parallel portfolio of the MiniSAT
solver [5] with different parameterizations. At the SAT Competition 2011, an
extremely simple static parallel portfolio, ppfolio [10], dominated the wall-clock
categories on random and crafted SAT instances and came very close to winning
the applications category as well.

The obvious next step is to consider dynamic parallel portfolios, i.e., port-
folios that are composed based on the features of the given problem instance.
Traditionally, sequential portfolios simply select one of the constituent solvers
which appears best suited for the given problem instance. At least since the
invention of CP-Hydra [8] and SatPlan [13], sequential portfolios also schedule
solvers. That is, they may select more than just one constituent solver and assign
each one a portion of the time available for solving the given instance. Yun and
Epstein [15] introduced a heuristic method to build dynamic parallel portfolios.
The method relies heavily on the observation that running a deterministic solver



on more than one processor is a waste of time and is thus limited to the use of se-
quential SAT solvers only. A similar restriction applies to the work by Petrik and
Zilberstein [9]. They introduced a method to compute static parallel schedules
that are optimal with respect to the training instances, based on formulating the
problem as a non-linear optimization problem and considering only sequential
constituent solvers.

The best-performing sequential dynamic portfolio at the SAT Competition
2011 was 3S [7] where it won gold medals in the CPU-time category on ran-
dom and crafted instances. 3S combines a fixed-time static solver schedule with
the dynamic selection of one long-running SAT solver. To compute the static
schedule offline and to select the long-running solver online, 3S combines low-
bias nearest neighbor regression with integer programming optimization. In this
paper, we augment this methodology to devise dynamic parallel SAT portfolios
which include parallel SAT solvers.

2 SAT Solver Selector (3S)

Before considering the challenges of parallel portfolios, let us first review sequen-
tial 3S in more detail. 3S works in two phases, an offline learning phase, and an
online execution phase.

– At Runtime: In the execution phase, as all dynamic solver portfolios, 3S first
computes features of the given problem instance. In particular, 3S uses the
same 48 core features as SATzilla [14]. Then, 3S selects k ∈ IN instances that
are most ”similar” to the given instance in a training set of SAT instances
for which 3S knows all runtimes of all solvers. Similarity in 3S is determined
by the Euclidean distance of the (normalized) feature vectors of the given
instance and the training instances. 3S selects the solver that can solve most
of these k instances within the given time limit (ties are broken by shorter
runtime). Finally, 3S first runs a fixed schedule of solvers for 10% of the time
limit and then runs the selected solver for the remaining 90% of the available
time.

– Offline: In the learning phase, which takes place during the development of
the portfolio solver, 3S considers three tasks:
1. Computation of features and simulation of solvers on all instances to

determine their runtime on all training instances.
2. To compute a desirable size k of the neighborhood, 3S employs a cross

validation by random subsampling. That is, 3S repeatedly splits the
training set into a base and a validation set and determines which size of
k results in the best average validation set performance when using only
the base set training instances to determine the long running solver.

3. Lastly, 3S computes the fixed schedule of solvers that are run for 10%
of the competition runtime. The objective when producing this schedule
is to maximize the number of instances that can be solved within this
reduced time limit. Among schedules that can solve the same number of
instances, 3S selects one that minimizes the runtime of the schedule and
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then scales this shorter schedule back to the 10% time limit by increasing
the runtime of each solver in the schedule proportionally.

2.1 Schedule Computation

This last step deserves our special attention as it is at the core of what we will
need to do to generalize the 3S methodology for the case of parallel solver exe-
cution. The problem again is to select a schedule of solvers – that is, a sequence
of solvers with associated runtimes – that maximizes the number of instances
solved within the reduced time limit. This problem is obviously an optimization
problem, and it actually resembles a bit the set covering problem.

3S considers the following integer program (IP) to compute a solver schedule.
Let VS,t denote the set of instances i that can be solved by solver S within time
limit t.

Solver Scheduling IP

min (C + 1)
∑
i

yi +
∑
S,t

txS,t

s.t. yi +
∑

(S,t) | i∈VS,t

xS,t ≥ 1 ∀i

∑
S,t

txS,t ≤ C

yi, xS,t ∈ {0, 1} ∀i, S, t

For all pairs of solvers S and time limits t, there is one variable xS,t. Note
that there are a number of solvers times the number of training instances of such
variables as for each solver S 3S only considers time limits t where the solver
just solves an instance in the training set. xS,t will be equal one if and only if,
in our schedule, we will run solver S for t seconds.

The second set of variables are the yi, one for each training instance i. Vari-
able yi will be one if and only if the solver schedule cannot solve instance i.

The first set of constraints ensure that each instance is covered – either
because one of the selected solver/time pairs means that the respective solver
can solve the instance in the allocated time, or because the instance is counted
as not covered by yi. The final knapsack constraint simply ensures that the total
schedule time does not exceed the reduced time limit C.

The objective is first to minimize the number of uncovered instances. The
second criterion is to minimize the time of the schedule. Both is achieved simul-
taneously by minimizing the term (C+1)

∑
i yi+

∑
S,t txS,t. The latter summand

obviously minimizes the total time scheduled. The first summand minimizes the
number of uncovered instances. Note that the factor C + 1 ensures that the ob-
jective will always be less for schedules that solve at least one more instance,
even when the scheduled time would increase from 0 seconds to the maximum
of C seconds.
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For further details on 3S the reader is referred to [7] which also contains a
in-depth comparison to CP-Hydra [8].

2.2 Reducing the Number of Integer Variables

3S has 26 constituent SAT solvers, 11 of which are considered with two param-
eterizations each. Consequently, the scheduler considers 37 solvers. Moreover,
unlike prior SAT portfolios, the 3S portfolio is identical for all categories in the
SAT competition (application, crafted, and random). Consequently, it is based
on a vast set of training instances, almost 5,500. Therefore, the IP above has
more than 200,000 variables and more than 5,000 constraints. Although solved
offline, to solve this IP more quickly, 3S uses a heuristic in [7]. 3S first solves the
continuous relaxation of the solver scheduling IP. That is, it considers the linear
program (LP) where constraints yi, xS,t ∈ {0, 1} are replaced by 0 ≤ yi, xS,t ≤ 1.

When solving this relaxed LP the simplex algorithm [4] will only consider
variables where, at some point during the optimization, it is beneficial to intro-
duce these variables. In practice, during the optimization the vast majority of
the 200,000 variables will never be set to a value greater than zero. Without
going into the theory of linear programming, the important aspect is that the
simplex algorithm has a precise necessary condition to determine whether a vari-
able can improve the objective or not. Namely, in each step of the optimization,
the simplex algorithm prices each constraint with a so-called ”dual value.”

For each variable, it then computes a ”reduced cost.” The latter is defined
as the actual cost factor in the objective of the variable, minus the sum of the
variable’s coefficients in each constraint times the dual price of that constraint.
Formally, when cj is the cost coefficient, Aij is the matrix coefficient for variable
zj on constraint i, and when πi is the dual price for constraint i, then the reduced
costs c̄j for variable zj are defined as:

c̄j = cj −
∑
i

Aijπi.

Now, the simplex algorithm will only consider setting variable zj to a value
different from 0 when c̄j < 0. We then say, that the variable (or the respective
column in the matrix) has negative reduced costs.

So 3S solves the relaxation LP by introducing one (potentially new) variable
in each iteration. Then, to solve the actual integer problem, 3S removes all
variables from the solver scheduling IP which have never been introduced during
the optimization. This reduction in the number of integer variables speeds up
the solution to the integer program. However, Kadioglu et al. [7] showed that
the solutions found in this manner are near-optimal in practice and, on average,
work just as well on the test set as the optimal schedule would.

3 Parallel Solver Portfolios

The objective of this work is to generalize the 3S technology for the develop-
ment of parallel SAT solver portfolios. At the core of 3S lie two optimization
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problems. The first is the selection of the long running solver primarily based on
the maximum number of instances solved. The second is the solver scheduling
problem.

Consider the first problem when there are p > 1 processors available. The
objective is to select p solvers that, as a set, will solve the most number of
instances. Note that this problem can no longer be solved by simply choosing
the one solver that solves most instances in time. Moreover, we will now need to
decide how to integrate the newly chosen solvers with the ones from the static
schedule. The second problem is the solver scheduling problem discussed before,
with the additional problem that solvers need to be assigned to processors so
that the total makespan is within the allowed time limit.

A major obstacle in solving these problems efficiently is the symmetry in-
duced by the identical processors to which we can assign each solver. Symme-
tries can hinder optimization very dramatically as equivalent (partial) schedules
(which can be transformed into one another by permuting processor indices) will
be considered again and again by a systematic solver. For example, when there
are 8 processors, for each schedule there exist over 40,000 (8 factorial) equivalent
versions. An optimization that used to take about half a second may now easily
take 6 hours.

Another consideration is the fact that a parallel solver portfolio may obvi-
ously include parallel solvers as well. Assuming there are 8 processors and a
parallel solver employs 4 of them, there are 70 different ways to allocate proces-
sors for this solver. The portfolio that we will develop later will have 37 sequential
and 2 4-core parallel solvers. The solver scheduling IP that needs to be solved for
this case has over 1.5 million variables. Eventually, we will apply our technology
to a set of 72 of the latest SAT solvers from 2011, among them four parallel
solvers which we will consider to run with 1, 2, 3, and 4 processors. Note that,
in the parallel case, we will need to solve these IPs at runtime. Consequently,
where 3S could afford to price out all variables at each step, we will need a
more sophisticated method to speed up the optimization time – which directly
competes with the remaining time to solve the actual SAT problem that was
given.

3.1 Parallel Solver Scheduling

Recall again that we need to solve two different optimization problems. The first
is to compute a static schedule for the first 10% of the allowed runtime. This prob-
lem is solved once, offline. The second optimization problem schedules solvers for
the remaining 90% of the allowed time. This is done instance-specifically, taking
into account the specific features of the SAT instance that is given.

We will address both optimization problems by considering the following IP.
Let tS ≥ 0 denote the minimum time that solver S must run in the schedule,
let M = {S; |; tS > 0} denote the set of solvers that have a minimal runtime, let
p be the number of processors, and let nS ≤ p denote the number of processors
that solver S requires.
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Parallel Solver Scheduling IP - CPU time

min (pC + 1)
∑
i

yi +
∑
S,t,P

tnSxS,t,P

s.t. yi +
∑

(S,t) | i∈VS,t,P⊆{1,...,p},|P |=nS

xS,t,P ≥ 1 ∀i

∑
S,t,P⊆{1,...,p}∪{q},|P |=nS

txS,t,P ≤ C ∀q ∈ {1, . . . , p}

∑
S,t,P⊆{1,...,p},|P |=nS ,t≥tS

xS,t,P ≥ 1 ∀S ∈M

∑
S,t,P⊆{1,...,p},|P |=nS

xS,t,P ≤ N

yi, xS,t,P ∈ {0, 1} ∀i, S, t, P ⊆ {1, . . . , p}, |P | = nS

Variables yi are exactly what they were before. There are now variables
xS,t,P for all solvers S, time limits t, and subsets of processors P ⊆ {1, . . . , p}
with |P | = nS . xS,t,P is 1 if an only if solver S is run for time t on the processors
in P in the schedule.

The first constraint is again to solve all instances with the schedule or count
them as not covered. There is now a time limit constraint for each processor.
The third set of constraints ensures that all solvers that have a minimal solver
time are included in the schedule, with an appropriate time limit. The last
constraint finally places a limit on the number of solvers that can be included in
the schedule.

The objective is again to minimize the number of uncovered instances. The
secondary criterion is to minimize the total CPU time of the schedule.

Remark 1. Note that the IP above needs to be solved both offline to determine
the static solver schedule (for this problem M = ∅ and the solver limit is infinite)
and during the execution phase (when M and the solver limit are determined by
the static schedule computed offline). Therefore, we absolutely need to be able
to solve this problem quickly, despite its huge size and its inherent symmetry
caused by the multiple processors.

Note also that the parallel solver scheduling IP does not directly result in
an executable solver schedule. Namely, the IP does not specify the actual start
times of solvers. In the sequential case this does not matter as solvers can be
sequenced in any way without affecting the total schedule time or the number of
instances solved. In the parallel case, however, we need to ensure that the parallel
processes are in fact run in parallel. We omit this aspect from the IP above to
avoid further complicating the optimization. Instead, after solving the parallel
solver IP, we heuristically schedule the solvers in a best effort approach, whereby
we may preempt solvers and eventually even lower the runtime of the solvers to
obtain a legal schedule. In our experiments presented later it turned out that in
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practice the latter was never necessary. Hence, the quality of the schedule was
never diminished by the necessity to schedule processes that belong to the same
parallel solver at the same time.

3.2 Solving the Parallel Solver Scheduling IP

We cannot afford to solve the parallel solver scheduling IP exactly during the
execution phase. Each second spent on solving this problem is one second less for
solving the actual SAT instance. Hence, we revert to solving the problem heuris-
tically by employing column generation, whereby the generation of IP variables
is limited to the root node.

While 3S prices all columns in the IP during each iteration, fortunately we
actually do not need to do this here. Consider the reduced costs of a variable.
Denote with µi ≤ 0 the dual prices for the instance-cover constraints, πq ≤ 0 the
dual prices for the processor time limits, νS ≥ 0 the dual prices for the minimum
time solver constraints, and σ ≤ 0 the dual price for the limit on the number of
solvers. Finally, let ν̄S = νS when S ∈M and 0 otherwise. Then:

c̄S,t,P = nSt−
∑

i∈VS,t

µi −
∑
q∈P

tπq − ν̄S − σ.

The are two important things to note here: First, the fact that we only
consider variables introduced during the column generation process means that
we reduce the processor symmetry in the final IP. While it is not impossible, it is
unlikely that the variables that would form a symmetric solution to a schedule
that can already be formed from the variables already introduced would have
negative reduced costs.

Second, to find a new variable that has the most negative reduced costs,
we do not need to iterate through all P ⊆ {1, . . . , p} for all solver/time pairs
(S, t). Instead, we order the processors by their decreasing dual prices. The next
variable introduced will use the first nS processors in this order as all other
selections of processors would result in higher reduced costs.

3.3 Minimizing Makespan and Post Processing the Schedule

We now have everything in place to develop our parallel SAT solver portfolio. In
the offline training phase we compute a static solver schedule based on all training
instances for 10% of the available time. We use this schedule to determine a set
M of solvers that must be run for at least the static scheduler time at runtime.
During the execution phase, given a new SAT instance we compute its features,
determine the k closest training instances, and compute a parallel schedule that
will solve as many of these k instances in the shortest amount of CPU time
possible.

In our experiments we consider a second variant of the parallel solver schedul-
ing IP where the secondary criterion is not to minimize CPU time but the
makespan of the schedule. The corresponding IP is given below, where variable
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m measure the minimum idle time for all processors. The reduced cost compu-
tation changes accordingly.

Parallel Solver Scheduling IP - Makespan

min (C + 1)
∑
i

yi −m

s.t. yi +
∑

(S,t) | i∈VS,t,P⊆{1,...,p},|P |=nS

xS,t,P ≥ 1 ∀i

m+
∑

S,t,P⊆{1,...,p}∪{q},|P |=nS

txS,t,P ≤ C ∀q ∈ {1, . . . , p}

∑
S,t,P⊆{1,...,p},|P |=nS ,t≥tS

xS,t,P ≥ 1 ∀S ∈M

∑
S,t,P⊆{1,...,p},|P |=nS

xS,t,P ≤ N

yi, xS,t,P ∈ {0, 1} ∀i, S, t, P ⊆ {1, . . . , p}, |P | = nS

Whether we minimize CPU time or makespan, as remarked earlier, we post-
process the result by assigning actual start times to solvers heuristically. We also
scale the resulting solver times to use as much of the available time as possible.
For low values of k, we often compute schedules that solve all k instances in a
short amount of time without utilizing all available processors. In this case, we
assign new solvers to the unused processors in the order of their ability to solve
the highest number of the k neighboring instances.

4 Experimental Results

Using the methodology above, we built two parallel portfolios. The first based
on the 37 constituent solvers of 3S [7]. We refer to this portfolio as p3S-37. The
second portfolio that we built includes two additional solvers, ’Cryptominisat
(2.9.0)’ [11] and ’Plingeling (276)’ [2], both executed on four cores. We refer to
this portfolio as p3S-39. It is important to emphasize that all solvers that are
part of our portfolio were available before the SAT Competition 2011. We would
have liked to compare our portfolio builder with other parallel portfolios. How-
ever, existing works on parallel portfolios do not accommodate parallel solvers.
Consequenlty, in our experiments we will compare p3S-37 and p3S-39 with the
state of the art in parallel SAT solving. The winners in the parallel tracks at
the 2011 SAT Competition were the parallel solver portfolio ’ppfolio’ [10] and
’Plingeling (587f)’ [3], both executed on eight cores. Note that these competing
solvers are new solvers that were introduced for the SAT Competition 2011.

As our benchmark set of SAT instances, to the 5, 464 instances from all SAT
Competitions and Races between 2002 and 2010 [1], we added the 1, 200 (300
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Table 1. Average performance comparison parallel portfolio when optimizing CPU
time and varying neighborhood size k based on 10-fold cross validation.

CPU Time 10 25 50 100 200

Average (σ) 320 (45) 322 (43.7) 329 (42.2) 338 (43.9) 344 (49.9)
Par 10 (σ) 776 (241) 680 (212) 694 (150) 697 (156) 711 (221)

# Solved (σ) 634 (2.62) 636 (2.22) 636 (1.35) 637 (1.84) 636 (2.37)
% Solved (σ) 99.0 (0.47) 99.2 (0.39) 99.2 (0.27) 99.2 (0.28) 99.2 (0.41)

Table 2. Average performance comparison parallel portfolio when optimizing
Makespan and varying neighborhood size k based on 10-fold cross validation.

Makespan 10 25 50 100 200

Average (σ) 376.1 (40.8) 369.2 (42.9) 374 (40.7) 371 (40.8) 366 (36.9)
Par 10 (σ) 917 (200) 777 (192) 782 (221) 750 (153) 661 (164)

# Solved (σ) 633 (2.16) 635 (2.28) 634.9 (2.92) 635 (1.89) 637 (2.01)
% Solved (σ) 98.8 (0.39) 99.1 (0.39) 99.1 (0.46) 99.2 (0.32) 99.3 (0.34)

application, 300 crafted, 600 random) instances from last years SAT Compe-
tition 2011. Based on this large set of SAT instances, we created a number of
benchmarks. Based on all SAT instances that can be solved by at least one of the
solvers considered in p3S-39 within 5,000 seconds, we created an equal 10 par-
tition. We use this partition to conduct a ten-fold cross validation, whereby in
each fold we use nine partitions as our training set (for building the respective
p3S-37 and p3S-39 portfolios), and evaluate the performance on the partition
that was left out before. For this benchmark we report average performance over
all ten splits. On top of this cross-validation benchmark, we also consider the
split induced by the SAT Competition 2011. Here we use all instances prior to
the competition as training set, and the SAT Competition instances as test set.
Lastly, we also created a competition split based on application instances only.

As performance measures we consider the number of instances solved, average
runtime, and PAR10 score. The PAR10 is a penalized average runtime where
instances that time out are penalized with 10 times the timeout. Experiments
were run on dual Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors with
24 GB of DDR-3 memory.

Impact of the IP Formulation and Neighborhood Size In Tables 1 and 2 we
show the average cross-validation performance of p3S-39 when using different
neighborhood sizes k and the two different IP formulations (tie breaking by
minimum CPU time or minimizing schedule makespan). As we can see, the size of
the neighborhood k affects the most important performance measure, the number
of instances solved, only very little. There is a slight trend towards larger k’s
working a little bit better. Moreover, there is also not a great difference between
the two IP formulations, but on average we find that the version that breaks ties
by minimizing the makespan solves about 1 instance more per split. Based on
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Table 3. Performance of 10-fold cross validation on all data. Results are averages over
the 10 folds.

Cross p3S-37 p3S-39
Validation 4 core 8 core 4 core 8 core

Average (sigma) 420 (22.1) 355 (31.3) 435 (48.5) 366 (36.9)
Par 10 (sigma) 991 (306) 679 (176) 1116 (256) 661 (164)
Solved (sigma) 630 (4.12) 633 (2.38) 631 (2.75) 637 (2.01)

% Solved (sigma) 98.3 (0.63) 98.8 (0.35) 98.5 (0.49) 99.3 (0.34)

these results, p3S in the future refers to the portfolio learned on the respective
training benchmark using k = 200 and the IP formulation that minimizes the
makespan.

4.1 Impact of Parallel Solvers and the Number of Processors

Next we investigate the impact of employing parallel solvers in the portfolio. In
Tables 3 and 4 we compare the performance of p3S-37 (without parallel solvers)
and p3S-39 (which employs two 4-core parallel solvers) on the cross-validation
and on the competition split. We observe a small difference in the number of
solved instances in the cross-validation, and a significant gap in the competition
split.

Two issues are noteworthy about that competition split. First, since this was
the latest competition and these instances were also used for the parallel track,
the instances in the test set of this split are significantly harder than the instances
from earlier years. The relatively low percentage of instances solved even by the
best solvers at the SAT Competition 2011 is an indication for this. Second,
some instance families in this test set are completely missing in the training
partition. That is, for a good number of instances in the test set there may
be no training instance that is very similar. These features of any competition-
induced split (which is the realistic split scenario!) explain why the average
cross-validation performance is often significantly better than the competition
performance. Moreover, they explain why p3S-39 has a significant advantage
over p3S-37: When a lot of the instances are out of reach of the sequential
solvers within the competition timeout then the portfolio must necessarily include
parallel solvers to perform well.

As a side remark: the presence of parallel solvers is what makes the compu-
tation of parallel portfolios challenging in the first place. Not only do parallel
solvers complicate the optimization problems that we considered earlier. In the
extreme case, if all solvers were sequential, we could otherwise have as many
processors as solvers, and then a trivial portfolio would achieve the performance
of the virtual best solver. That is to say: The more processors we have, the eas-
ier solver selection becomes. We were curious to see what would happen when
we made the selection harder than it actually is under the competition setting
and reduced the number of available processors to 4. For both p3S-37 and p3S-
39, the cross-validation performance decreases only moderately while, under the
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Table 4. Performance of the solvers on all 2011 SAT Competition data.

Competition 3S //3S VBS
4 cores 8 cores 4 cores 8 cores

Average 1907 1791 1787 1640 1317
Par 10 12,782 12,666 11,124 10,977 10,580
Solved 843 865 853 892 953

% Solved 70.3 72.1 71.1 74.3 79.4

competition split, performance decays significantly. At the same time, the ad-
vantages of p3S-39 over p3S-37 shrink a lot. As one would expect, the advantage
of employing parallel solvers decays with a shrinking number of processors.

4.2 Parallel Solver Selection and Scheduling vs. State-of-the-Art

The dominating parallel portfolio to date is ’ppfolio’ [10]. In the parallel track at
the SAT Competition 2011, it won gold in the crafted and random categories and
came in just shy to winning the application category as well where it was beat
by just one instance. In the application category, the winning solver was ’Plin-
geling (587f)’ run on 8 cores. We compare against both competing approaches
in Figures 1 and 2.

Instances From All SAT Categories The top plot in Figure 1 shows the
scaling behavior in the form of a “cactus plot” for 8-core runs of ppfolio, p3S-
37, and p3S-39, for the competition split containing all 1,200 instances used in
the 2011 SAT Competition. This plot shows that p3S-39 (whose curve stays the
lowest as we move to the right) can solve significantly more instances than the
other two approaches for any given time limit larger than around 800 sec. We
also see that p3S-37, based solely on sequential constituent solvers, performs
similar to ppfolio for time limits up to 3,000 sec, and begins to outperform it for
larger time limits.

This comparative performance profile is by no means accidental. It is well
known in SAT that an instance that is exceedingly difficult to solve for one solver
poses almost no problem at all for another. This is the deeper reason why the
10% static schedules are well motivated, because there exists a realistic chance
that one of the solvers scheduled for a short period of time will solve the instance.

At a higher level, we are observing the same here. Sequential SAT solvers
have, for a good number of instances, the chance to solve an instance within
some time. Consequently, a portfolio of sequential solvers only can, up to a
point, compete with a solver portfolio that incorporates parallel solvers as well.
However, a realistic set of hard instances, as the one considered at the SAT
Competition, also contains instances that are very hard to solve, even by the
best solver for that instance. Some of the instances will not be solvable by any
sequential algorithm within the available time. This is why it is so important to
be able to include parallel solvers in a parallel portfolio.
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Fig. 1. Comparison on all 1200 instances used in the 2011 SAT Competition, across
all categories. Left: cactus plot depicting the scaling behavior of solvers. Right: per-
instance comparison between ppfolio and p3S-39.

The bottom plot in Figure 1 shows the per-instance performance of p3S-39
vs. ppfolio, with runtimes in log-scale on both axes. More points being below the
diagonal red line signifies that p3S-39 is faster than ppfolio on a large majority
of the instances. ppfolio also times out on many instances that p3S-39 can solve,
as evidenced the large number of points on the right margin of the plot.

Overall, p3S-39 was able to solve 892 instances, 47 more than ppfolio. p3S-37
was somewhere in-between, solving 20 more than ppfolio. In fact, even with only
4 cores, p3S-37 and p3S-39 solved 846 and 850 instances, respectively, more than
the 845 ppfolio solved on 8 cores.

Industrial Instances Traditionally, portfolios did not excel in the category for
industrial SAT instances. In part, this is because there are much fewer repre-
sentative training instances available than in the random or crafted categories.
That is to say, at the competition there is a much better chance to encounter an
application instance that is very much different from anything that was consid-
ered during training. Moreover, progress on solvers that work well on industrial
instances is commonly much more pronounced. Since competition portfolios are
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Fig. 2. Comparison on the 300 application category instances used in the 2011 SAT
Competition. Left: cactus plot depicting the scaling behavior of solvers. Right: per-
instance comparison between Plingeling and p3S-39.

based on older solvers, even their intelligent selection may not be enough to
make up for the progress on the solvers themselves.

Figure 2 shows similar comparisons, but on the competition split restricted
to the application category, and with Plingeling as one of the competing solvers.
The cactus plot on top still shows a significantly better scaling behavior of p3S-
39 than both Plingeling and ppfolio. The scatter plot shows that Plingeling, not
surprisingly, is able to solve several easy instances within just a few seconds (as
evidenced by the points on the bottom part of the left edge of the plot), but
begins to take more time than p3S-39 on challenging instances and also times
out on many more instances (shown as points on the right edge of the plot).

Overall, with 8 cores, p3S-39 solved 248 application category instances, 23
more than ppfolio and 22 more than Plingeling. Moreover, p3S-37, based only
on sequential constituent solvers, was only two instances shy of matching Plin-
geling’s performance. This performance improvement is quiete significant. In the
application category, the best performing algorithms usually lie just a couple of
instances solved apart. In 2011, the top ten solvers solved between 200 and 215
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Fig. 3. Performance of p3S built using latest solvers, on all the 300 application category
instances used in the 2011 SAT Competition. Left: cactus plot depicting the scaling be-
havior of solvers. Right: per-instance comparison between p3S-39 and p3S-newsolvers.

instances. An improvement of over 20 instances over the best-performing solver
from nine months ago is much more than we had expected.

2012 Competition Portfolio Finally, to demonstrate the efficacy of the method
presented here, we trained a parallel portfolio based on 40 of the latest available
parallel and sequential SAT solvers. Two of them were run on 1, 2, 3, and 4 pro-
cessors. For all solvers, we consider a secondary setting where the given instance
is first simplified by the Satelite program. In total, we have thus 92 solvers, 6 of
them run in parallel on 2, 3, or 4 processors.

In Figure 3 we compare the performance of this portfolio against Plingeling,
the winning parallel solver in the 2011 SAT Competition nine months ago, and
p3S-39, our portfolio of solvers from 2010 and before. We observe that our
method of devising parallel portfolios continues to result in strong performance
and generalizes well to this extended set of solvers and corresponding training
data. The parallel portfolio based on the latest SAT solvers currently competes
in the 2012 SAT Challenge.
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5 Conclusion

We presented the first method for devising drynamic parallel solver portfolios
that accommodate parallel solvers. Our approach is based on the recently intro-
duced SAT Solver Selector and Scheduler (3S). We combine core methods from
machine learning, such as nearest neighbor regression, with methods from opti-
mization, in particular integer programming and column generation, to produce
parallel solver schedules at runtime. We compared different formulations of the
underlying optimization problems and found that minimizing makespan as a tie
breaking rule works slightly better than minimizing CPU time.

We compared the resulting portfolio, p3S-39, with the current state-of-the-
art parallel solvers on instances from all SAT categories and from the application
category only. We found that p3S-39 marks a very significant improvement in
our ability to solve SAT instances.
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