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Abstract. The satisfiability problem was amongst the very first prob-
lems proven to be NP-Complete. It arises in many real world domains
such as hardware verification, planning, scheduling, configuration and
telecommunications. Recently, there has been growing interest in using
portfolios of solvers for this problem. In this paper we present a case-
based reasoning approach to SAT solving. A key challenge is the adap-
tation phase, which we focus on in some depth. We present a variety of
adaptation approaches, some heuristic, and one that computes an opti-
mal Kemeny ranking over solvers in our portfolio. Our evaluation over
three large case bases of problem instances from artificial, hand-crafted
and industrial domains, shows the power of a CBR approach, and the
importance of the adaptation schemes used.

1 Introduction

The satisfiability (sat) problem is defined as follows: given a propositional for-
mula, φ = f(x1, . . . , xn), over a set of variables x1, . . . , xn, decide whether or not
there exists a truth assignment to the variables such that φ evaluates to true.

sat problem instances are usually expressed in a standard form, called con-
junctive normal form (cnf). A sat problem, in this form, is expressed as a
conjunction of clauses, where each clause is a disjunction of literals; a literal is
either a variable or its negation. The following sat formula is in cnf:

φ = (x1 ∨ x3 ∨ ¬x4) ∧ (x4) ∧ (x2 ∨ ¬x3).

This formula comprises three clauses: the first a disjunction of literals x1, x3 and
¬x4; the second involves a single literal x4; the third is a disjunction of literals
x2 and ¬x3. The sat problem φ is satisfiable because we can set x1, x2 and x4

to true, satisfying the first, third and second clauses, respectively.
sat problems occur in a variety of domains such as hardware verification,

security protocol analysis, theorem proving, scheduling, routing, planning, digi-
tal circuit design and artificial intelligence [1]. Deciding whether a sat problem
is satisfiable or not is usually performed by either systematic search, based on
backtracking, or local search. Because the general problem is NP-Complete, sys-
tematic search algorithms have exponential worst-case run times, which has the



effect of limiting the scalability of these methods. If a sat problem is unsatisfi-
able, local search algorithms, while scalable, cannot prove unsatisfiability.

Over the past decade there has been a significant increase in the number
of satisfiability solving systems that have been developed. It is recognised that
different solvers are better at solving different problem instances, even within
the same problem class [2]. It has been shown that the best on-average solver
can be out-performed by a portfolio of possibly slower on-average solvers be-
cause of complementarities amongst them, i.e. a slow on-average solver might
have best performance on a particular instance. Three specific approaches that
use contrasting approaches to portfolio management for the constraint satisfac-
tion problem (csp), sat and quantified Boolean formula (qbf) are CPhydra,
SATzilla and Aqme, respectively. CPhydra is a portfolio of constraint solvers
that exploits a case base of problem solving experience [3]. CPhydra combines
case-based reasoning with the idea of partitioning CPU-Time between com-
ponents of the portfolio in order to maximise the expected number of solved
problem instances within a fixed time limit; CPhydra is an earlier piece of
work in our research programme on portfolios, but does not consider alternative
approaches to adaptation, which we study here. SATzillabuilds run time pre-
diction models using linear regression techniques based on structural features
computed from instances of the Boolean satisfiability problem [4]. Given an un-
seen instance of the satisfiability problem, SATzilla selects the solver from its
portfolio that it predicts will have the fastest running time on the instance. The
Aqme system is a portfolio approach to solving quantified Boolean formulae, i.e.
SAT instances with some universally quantified variables [5].

The objective of the work reported in this paper is to study a simple case-
based reasoning approach to a portfolio for the sat problem. We present three
large case bases of problem-solving experience with a large number of modern
sat solvers in three distinct domains, including one comprising almost 1200 in-
dustrial problems (Section 2), which we have made available online. We focus
primarily on the problem of adaptation, having retrieved a suitable set of similar
experiences involving problems similar to the one we wish to solve (Sections 3
and 4). Our results (Section 5) demonstrate that a case-based reasoning ap-
proach would perform close to oracle performance on the domains we evaluate,
exhibiting a potential killer application domain for case-based reasoning. These
results are consistent with the belief held in the sat community that experience
plays a key role in selecting a good solver for a problem instance.

2 Building Case-bases for SAT Solving

We summarise the representation, cases and similarity measure used in our three
case bases for sat solving. Our case bases relate to three domains: industrial
instances, hand-crafted instances and randomly generated instances.

Feature Representation. We employed the same set of sat instance features
as those used in SATzilla.1 SATzilla is a successful algorithm portfolio for
1 http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
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SATzilla: Portfolio-based Algorithm Selection for SAT

Problem Size Features:
1. Number of clauses: denoted c

2. Number of variables: denoted v

3. Ratio: c/v

Variable-Clause Graph Features:
4-8. Variable nodes degree statistics: mean,
variation coe�cient, min, max and entropy.
9-13. Clause nodes degree statistics: mean, varia-
tion coe�cient, min, max and entropy.

Variable Graph Features:
14-17. Nodes degree statistics: mean, variation
coe�cient, min and max.

Balance Features:
18-20. Ratio of positive and negative literals in each
clause: mean, variation coe�cient and entropy.
21-25. Ratio of positive and negative occurrences of
each variable: mean, variation coe�cient, min, max
and entropy.
26-27. Fraction of binary and ternary clauses

Proximity to Horn Formula:
28. Fraction of Horn clauses
29-33. Number of occurrences in a Horn clause for
each variable: mean, variation coe�cient, min, max
and entropy.

DPLL Probing Features:
34-38. Number of unit propagations: computed at
depths 1, 4, 16, 64 and 256.
39-40. Search space size estimate: mean depth to
contradiction, estimate of the log of number of nodes.

Local Search Probing Features:
41-44. Number of steps to the best local minimum
in a run: mean, median, 10th and 90th percentiles for
SAPS.
45. Average improvement to best in a run: mean
improvement per step to best solution for SAPS.
46-47. Fraction of improvement due to first local
minimum: mean for SAPS and GSAT.
48. Coe�cient of variation of the number of un-
satisfied clauses in each local minimum: mean over
all runs for SAPS.

Figure 2: The features used for building SATzilla07; these were originally introduced and described
in detail by Nudelman et al. (2004a).

3.4 Computing Features and Runtimes

All our experiments were performed using a computer cluster consisting of 55 machines with
dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, running Suse Linux 10.1. As in
the SAT competition, all runs of any solver that exceeded a certain runtime were aborted
(censored) and recorded as such. In order to keep the computational cost manageable, we
chose a cuto↵ time of 1 200 CPU seconds.

3.5 Identifying Pre-solvers

As described in Section 2, in order to solve easy instances quickly without spending any time
for the computation of features, we use one or more pre-solvers: algorithms that are run
unconditionally but briefly before features are computed. Good algorithms for pre-solving
solve a large proportion of instances quickly. Based on an examination of the training
runtime data, we chose March dl04 and the local search algorithm SAPS (Hutter et al., 2002)
as pre-solvers for RANDOM, HANDMADE and ALL; for SAPS, we used the UBCSAT implementation
(Tompkins & Hoos, 2004) with the best fixed parameter configuration identified by Hutter
et al. (2006). (Note that while we did not consider incomplete algorithms for inclusion in
the portfolio, we did use one here.)

Within 5 CPU seconds on our reference machine, March dl04 solved 47.8%, 47.7%, and
43.4% of the instances in our RANDOM, HANDMADE and ALL data sets, respectively. For the
remaining instances, we let SAPS run for 2 CPU seconds, because we found its runtime to be
almost completely uncorrelated with March dl04 (Pearson correlation coe�cient r = 0.118
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Fig. 1. A summary of the features used to describe SAT instances in our case base.
These are the same features used in SATzilla [4].

sat, i.e. a system that uses machine learning techniques to select the fastest
sat solver for a given problem instance. That system uses a total of 48 features,
summarised in Figure 1 [4]. These features can be summarised under nine dif-
ferent categories: problem size features; variable-clause graph features; variable
graph features; balance features; proximity to Horn formula; DPLL probing fea-
tures; and local search probing features. The first category of features are self
explanatory, and simply relate to the number of variables and clauses in the sat
instance. The next two categories relate to two different graph representations
of a sat instance. The variable-clause graph is a bipartite graph with a node
for each variable, a node for each clause, and an edge between them whenever
a variable occurs in a clause. The variable graph has a node for each variable
and an edge between variables that occur together in at least one clause. The
balance features are self explanatory and relate, primarily, to the distribution
of positive and negative literals within the sat instance. Another category mea-
sures the proximity to a Horn formula. This captures how close the sat instance
is to an important polynomial class of sat that can be solved using the stan-
dard inference method used in all systematic sat solvers (i.e. unit propagation).
The DPLL probing features are related to statistics that a standard systematic
search algorithm gathers while testing the difficulty of the instance [6]. The local
search features are the non-systematic analogue of the latter category.

Cases. We built three case bases from the training data used by the SATzilla
system [4].2 Each case in the case base represents one SAT problem instance
and the individual performance of a set of solvers when applied to it. For each

2 SATzilla data: http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/


Table 1. The number of problem instances and solvers in each of our three case bases.

Case base # Instances # Solvers

Handcrafted (HAN) 1181 19
Industrial (IND) 1183 19
Random (RAN) 2308 27

benchmark instance in the dataset, there is a record of whether each solver solved
the instance within a specified cut-off time (1 hour), the time taken by each to
solve the instance, and whether the solver crashed during execution. Each solver
is run independently of each other. Thus, each case is a pair, (F, S), where F is
a set of feature values and S is a set of pairs encoding the performance of each
solver on the query instance.

The problem instances were originally taken from the benchmark suites as-
sociated with the annual International SAT Competition.3 We combine the in-
stances from each year of the SAT competition into a single combined dataset.
Each instance is assigned to one of three categories: handcrafted (HAN), indus-
trial (IND) and randomly generated (RAN) problem instances. The instances
are additionally separated into what SATzilla classified as satisfiable and un-
satisfiable instances. For our evaluation, instances from these two classifications
were combined into a single dataset. Table 1 gives the resulting size of each case
base.4 Table 1 also shows the number of solvers in each. Note that the random
category contains eight additional solvers that are not available in the dataset
for the handcrafted and industrial categories.

Similarlity Metric. The features that encode the cases are all numeric. For
the purposes of this paper we assume that the similarity between two cases is
computed using the unweighted normalised Euclidean distance. Feature values
are normalised to the interval [0, 1]. Specifically, for the ith feature of case γ, we
compute the normalised value η(γ[i]) of feature value γ[i] as follows:

η(γ[i]) =
γ[i]−min(i)

max(i)−min(i)
.

where min(i) and max(i) are the minimum and maximum values respectively
for feature i across all cases.

When evaluating a test case, one finds the k cases with highest similarity
(smallest Euclidean distance) in the case base. The challenge is then, given the
set of performance data for each solver, how should one adapt this experience to
the current problem instance. We frame this problem as a label ranking task [7],
which we will discuss in greater detail in the following section.

3 http://www.satcompetition.org
4 The case bases are available at http://osullivan.ucc.ie/datasets/iccbr2012/

http://www.satcompetition.org
http://osullivan.ucc.ie/datasets/iccbr2012/


3 Adaptation Strategies

The specific task of adaptation in our portfolio context is to decide which solver
should be used to solve a given instance. We will consider a setting in which
we are allocated one hour to solve an instance. The objective is, given a set of
problem instances, to solve as many of them as possible within the cutoff in the
shortest time. In other words, we lexicographically order these two objectives:
maximise the number of solved instances, and tie-break by running time, which
we prefer to minimise. In our setting, each nearest neighbour can be seen as giving
an ordering over the performance of the available solvers. We can interpret this
order as a ranking, possibly time-weighted.

In traditional classification, we are interested in assigning one or more labels
from a finite set of labels, to a case. In contrast, label ranking deals with assigning
a total ordering of labels to a case. This ranking of labels can be much more
useful than assigning a single label, e.g. rank aggregation methods have been
used to combine query results from multiple search engines [8]. In this paper,
the labels represent different algorithms in our portfolio solver and the ranking
of labels represents the expected order of run time on an instance.

Label ranking may also be seen as a generalization of multi-label classifi-
cation. Instead of classifying a case with a subset of the classes, we instead
assign a totally ordered ranking of the classes. Multi-label ranking is the task
whereby in addition to producing a total ordering of the labels for an instance,
the task is to also identify a partition of the labels into relevant and irrelevant
labels [9,10]. This introduces an additional layer of complexity to the task. Meth-
ods for learning pairwise preferences between labels have been proposed [7]. It
has been shown that case-based label ranking compares well against model-based
approaches [11]. An in depth survey of additional label ranking methods is given
in [12].

We consider a variety of voting-based approaches for label ranking and con-
sensus ranking; we refer the reader to the literature for further details of the
various methods [13]. We will use examples throughout, based on the sample
data presented in Table 2. In this table, we present an example of the retrieval
set from our case-based system, but do not present the running times. Instead
we simply order the solvers by running time.

Table 2. An example list of label rankings, which we will use as a running example.
Each ranking contains a total ordering of the labels a, b, c, d . The operator ≺ can be
read as ‘faster than’.

Name Label Ranking

A a ≺ b ≺ c ≺ d
B c ≺ b ≺ a ≺ d
C b ≺ a ≺ d ≺ c
D a ≺ c ≺ d ≺ b
E b ≺ a ≺ c ≺ d



Kendal-Tau Distance. To compare two rankings, we define a function to com-
pute the distance between them. The Kendal-Tau distance between two rankings
A and B is the number of discordant pairs. Let L be the set of all labels and let
A and B be two complete rankings of these labels. Formally:

KT-distance(A,B) =
∑

c,d∈L, c 6=d

{
1 if A and B rank c and d in a different order
0 otherwise .

Example 1. Using the example rankings given in Table 2, the Kendal-Tau Dis-
tance between rankings A and B is:

KT-distance(A,B) = 3

This is because the pairs of candidates (a, b), (a, c) and (b, c) are ranked differ-
ently by the two rankings. A and B both rank the other pairs, e.g. (c, d) , in the
same order. ut

Kemeny Consensus Ranking. The Kemeny Score of a ranking R is the sum
of all the Kendal Tau distances from R to all rankings among the votes V .

Kemeny-Score(R, V ) =
∑
v∈V

KT-distance(R, v)

Example 2. Let R = 〈a ≺ c ≺ b ≺ d〉. If we take all rankings from Table 2 as
the votes, then the Kemeny Score of R is 9. This is the sum of:

KT-distance(R,A) = 1 KT-distance(R,B) = 2 KT-distance(R,C) = 3
KT-distance(R,D) = 1 KT-distance(R,E) = 2

ut

The Kemeny Consensus is the ranking of the labels that minimises the Ke-
meny Score. This may also be referred to as the optimal Kemeny ranking. It
is the ranking which minimises, among the votes, the number of disagreements
on the pairwise preference between every pair of labels. Aggregating multiple
rankings into a single optimal Kemeny ranking is NP-hard [8].

Example 3. For the votes given in Table 2, the optimal Kemeny ranking is 〈b ≺
a ≺ c ≺ d〉 with a Kemeny Score of 7. All other possible permutations of the
labels have a higher Kemeny Score than this. In this case the Kemeny Optimal
ranking matches one of the rankings in the votes, but this may not necessarily
be the case. ut

The Kemeny Consensus ranking is said to satisfy the Condorcet criterion.
This states that if a candidate is preferred by most voters to any other candi-
date, then it should be ranked first in the aggregation ranking. It expresses no
condition on the remainder of the positions, however.



Borda Voting. Borda voting is a polynomial time approximation scheme for
the Kemeny Consensus ranking. Each of the k nearest neighbours votes for each
label in the order of which that solver performed on that case. A label in position
p receives n − p + 1 points based on its position in the ranking. The points for
each candidate are summed up. The ranking is produced by sorting these tallies
in decreasing order. Borda voting does not satisfy the Condorcet criterion.

Example 4. For vote B in Table 2, candidates c, b, a and d would receive 4, 3,
2 and 1 points respectively. If we sum up the points from all the votes in this
table, the a would have a score of 16 points, b of 15, c of 12 and d of 7. The
resulting ranking would be 〈a ≺ b ≺ c ≺ d〉 . ut

Weighted Borda Voting. Weighted Borda voting takes extra information
about each neighbour into account. The vote for a particular solver is multiplied
by the weight in one of the two weighting schemes we consider. In distance-
weighted Borda voting (DW-BV), the weight WD is given as WD = 1

1+d where
d is the Euclidean distance between the neighbour and the test instance.

In time-weighted Borda voting (TW-BV) the weight WT is given as WT =
cutoff−t

cutoff , where ‘cutoff’ is the cut-off execution time limit and t is the time taken
for the solver on a given neighbour. Time-weighted Borda voting gives a large
weight to solvers that take very little time to solve the instance and a weight
of zero to any that timeout or do not solve the instance. This suits our goal of
choosing the solver that will perform fastest for a given instance.

Copeland Voting. Copeland voting looks at every pair of labels (a, b) and
counts the difference between the number of votes that prefer a to b and those
that prefer b to a. The label with the higher number of preferences gets one added
to its score. The label with the lower number of preferences gets one deducted
from its score. The resulting ranking of the labels is obtained by sorting on their
respective scores.

Example 5. Given the votes in Table 2, the label ranking produced by Copeland
voting would be 〈b ≺ a ≺ c ≺ d〉. The scores for each label would be: (a, 1), (b,
3), (c, -1), (d, -3). ut

Bucklin Voting. Bucklin voting is a means of choosing the label with the
best median ranking. The algorithm first attempts to select the label that has a
majority of first preference votes. The number of first preferences for each label
is counted across the votes. If one of the labels has a majority, then that label
is the winner. If no label has a majority, then the second preference votes are
added to the first. Again, if there is a label that has a majority of votes, then
that label is the winner. There may be multiple labels with a majority. In this
case, the winner is the one with the highest vote tally.



Coomb’s Voting. Coomb’s voting is similar to Bucklin voting in that it first
attempts to select the label that has the majority of first preference votes. If no
label has a majority, a separate election is held between the labels that are ranked
last in the votes. The label with the most last-place votes is then removed from
all votes. A tally of the first preference votes is taken again and this is repeated
until there is a label with a majority.

Instant Runoff Voting. In Instant Runoff voting (IRV), we again stop if there
is a label with a majority of first place votes. If not, then the label with the fewest
first preference votes is eliminated. This label is removed from each of the votes.
For each vote where the eliminated label held a first place preference, the next
preference votes are added to their respective label’s tally. This is repeated until
there is a candidate with a majority of votes. This voting scheme is similar to
Coomb’s voting except instead of eliminating the label that is ranked last, we
eliminate the label that has the fewest first preference votes.

Best Average Score. Among the data for the k nearest neighbour instances
is the run time for each solver on that neighbour instance. The Borda voting
and distance weighted Borda voting methods above do not take this valuable
data into account when performing their aggregation. Another strategy to get a
ranking of the solvers from this data is to order them by their average score across
these k instances. This gives us an ordering of the solvers by their performance,
averaged across the k nearest neighbours. We refer to this aggregation as ordering
by Best Average Score.

Very Best Ranking. The Very Best Ranking (VBR) is the ranking produced
by an oracle, who knows the best ranking for each instance. We use this ranking
as a benchmark to compare the rankings produced by the aggregation methods.

4 An Exact Method for Optimal Kemeny Ranking

The ranking methods presented in the previous section, with the exception of the
optimal Kemeny and VBR rankings, are heuristics. In this section a Mixed Inte-
ger Programming (MIP) model is presented for computing the optimal Kemeny
ranking from the k nearest neighbors of a query sat instance as an optimiza-
tion problem. This model was implemented using the combinatorial optimization
system Numberjack5 using SCIP as the underlying MIP solver.6

Let L be the set of all labels. Let V be the set of votes from each of the k
nearest neighbors. We encode each ranking as a list where each label takes the
value of the number of labels ranked higher than it. For example, if we are given
a ranking of the labels c ≺ a ≺ d ≺ b, then this would be converted to 〈1, 3, 0, 2〉
5 Available under LGPL from http://numberjack.ucc.ie/
6 SCIP: http://scip.zib.de/

http://numberjack.ucc.ie/
http://scip.zib.de/


because a has 1 candidate ahead of it, b has 3, and so on. This simplifies the
process of finding the index of a label within a ranking for the MIP model. We
define the MIP model as follows:

– R is the array of the rank indices in the Kemeny Consensus ranking. Ri

states the number of labels that are ranked before label i in the aggregation
ranking. The domain of values that each position in R can take is therefore
0 . . .m− 1. This array contains all the decision variables.

– We add the constraint that the values taken by the variables in R are all
different because only one candidate can occupy each position.

– For each pair of labels i and j, we have a binary variable rij which is encoded
to take the value 1 if i is ranked higher than j in the target ranking R, 0
otherwise.

– For each pair of labels i and j in each vote Vk we have a binary variable vkij

which takes the value 1 if label i is ranked higher than label j in vote Vk, 0
otherwise.

– For each pair of labels i and j in each vote Vk we have the binary variable
Dkij which is the exclusive-or between rij and vkij . This means Dkij will
take the value 1 iff R ranks i and j in a different order to Vk.

– The Kendal Tau distance to vote Vk from R is KTk, which is the sum over
all Dkij for every pair of candidates i and j.

– The Kemeny Score of the target ranking R is
∑
KTk. We attempt to min-

imise this value.

For a set of votes among 19 labels, this MIP model is able to solve the
difficult aggregation problem in a matter of seconds. Consider that a greedy naive
algorithm for commuting the Kemeny Optimal ranking may need to examine
every possible permutation of the labels, which is O(n!). It must compute the
Kemeny Score for each permutation and choose the ranking that minimises this
function. This approach quickly becomes infeasible.

5 Evaluation

We present an evaluation of both the quality of our adaptation strategies for
ranking solvers by run time (Section 5.1), and the performance of our case-
based reasoning-based solver portfolio for sat (Section 5.2). We use the case
bases described in Section 2. In terms of the quality of the rankings, we show that
rankings that consider running time, rather than relative position in the rank,
give better performance. This is somewhat unsurprising, but it is interesting to
see that the effort spent in finding the optimal Kemeny ranking is not worthwhile.

Of much greater significance is our demonstration that our CBR portfolio
out-performs all of its constituent solvers by a considerable margin. In fact, the
superiority of the CBR approach is observed regardless of the adaptation scheme
used. Again, rankings that consider time are superior to all others, and compare
well in terms of performance against the oracle (VBR) that always selects the
best solver for a particular sat instance.



Methodology. In all experiments we used a 10-fold cross validation approach,
studying each of our three case bases (Section 2) separately. We report aver-
ages, where appropriate. We always seek five nearest neighbours (5-NN), having
observed that setting k to this value gave good typical-case performance. For
the purpose of this paper, unweighted normalised Euclidean distance is used as
a similarity metric throughout. All adaptation methods use the same distance
measure, therefore each are tasked with aggregating the same set of neighbours.

5.1 Evaluation of the Adaptation Schemes

Given a ranking of the solvers, using a particular adaptation scheme, and their
respective execution times, we can plot the cumulative execution time of each
solver against its position in the ranking. Let s(i) be the solver ranked in position
i of a ranking, and t(α) be the time taken by solver α to solve the instance. The
plot of the cumulative time of the solvers in a ranking is given by:

f(x) =
x∑

i=1

t(s(i)).

If the solvers are ordered in strict order of increasing run time, the area under
the curve in this plot will be minimised. On the other hand, the ranking which is
as poor as possible will have maximum area. We compare each of our adaptation
strategies that produce a ranking in this way. Figure 2 shows an example plot
of the curve for each of the label rankings produced by an adaptation method.

We performed paired t-tests to compare two label ranking methods on the
basis of the area under the curves in our ranking plots. Such a paired t-test was
performed between every pair of adaptation methods on every instance across
the 10 splits in each dataset category. Table 3 gives the complete table of these
results showing the 95% confidence interval and the p-value. In this table a
confidence interval with negative lower and upper bounds, which is highlighted
in bold, signifies that the ranking on the left is statistically significantly better
than the ranking on the right.

On hand-crafted and industrial problems, which are really the most interest-
ing from a practical viewpoint, the best-average-solver (BAS) and three variants
of Borda voting out-perform all other methods; the statement is almost also true
in the random category. It is clear, and not unsurprising, that the methods that
take running time into account, out-perform all others. The Kemeny ranking
never out-performs another method.

While comparing the rankings is interesting in itself, the more important
question is how effective are these rankings in a CBR-based algorithm portfolio
for sat. We study this below.

5.2 Evaluation of the CBR-based Solver Portfolio for SAT

We implemented a variant of our basic CBR-based solver portfolio using each
of our adaptation schemes in turn. We name these using the acronym of the
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Fig. 2. An illustration of the curve produced by accumulating the time taken by each
solver in a ranking. Each line represents a curve produced by the rankings from each
of the adaptation methods that produce a ranking.

adaptation scheme used. Given a sat instance, the portfolio system will apply
the relevant adaptation scheme to the set of cases retrieved using our 5-NN
method. The highest ranked solver is selected. We record the total number of
instances solved by the chosen solvers and the cumulative time summed over all
solved instances, given a cut-off time of 1 hour per instance, in a 10-fold cross
validation setting. This setup is very similar to that of the International SAT
Competition.

We compare this to the Very Best Ranking (VBR), which chooses the best
solver for the instance given. We report the average number of instances solved
and the average run time, with standard deviation in both cases. In our results
tables (Tables 4, 5 and 6) we sort the variants in terms of number of instances
solved, and then by run time. The VBR, the oracle, is therefore always ranked
at the top. Due to space constraints, these leader boards only show the top 15
positions.
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Table 4. Leader board for the Handcrafted category of problem instances.

Approach Solver Name Nr. Solved Cumulative Time on
Solved Instances (s)

Oracle 1 VBR 114.9 (± 1.4) 24703.4 (± 4972.5)

CBR

2 TW-BV 110.5 (± 2.2) 25668.9 (± 5855.8)
3 BAS 109.5 (± 2.7) 26147.9 (± 7106.6)
4 DW-BV 109.3 (± 1.8) 26239.2 (± 6779.6)
5 BV 109.2 (± 1.8) 25561.7 (± 6541.9)
6 IRV 108.0 (± 1.8) 23872.8 (± 6121.4)
7 COOMBS 107.9 (± 2.5) 24553.9 (± 6317.8)
8 KEMENY 107.8 (± 2.4) 24163.2 (± 6683.3)
9 BUCKLIN 107.6 (± 2.5) 22892.7 (± 6783.0)

10 COPELAND 107.6 (± 2.5) 24060.7 (± 6140.9)

SAT

11 minisat20SAT07 88.1 (± 4.1) 33700.5 (± 9455.9)
12 mxc08 86.2 (± 3.9) 30312.6 (± 9620.1)
13 march dl2004 85.1 (± 3.5) 22245.3 (± 7770.6)
14 picosat846 84.0 (± 3.6) 28713.1 (± 8167.2)
15 minisat2.0 82.5 (± 4.3) 32019.3 (± 7527.4)

The overall result is that the best sat solvers are out-performed in every
problem class by each of the CBR-based portfolios. The CBR portfolio compares
very well against the oracle (VBR) in each category. For example, in the random
problem category, the CBR portfolio solves 33% more instances than the best
sat solver on its own, and solves within 5% of the instances solved by the oracle.

Both BAS and TW-BV portfolios perform consistently well, which would not
be obvious a-priori in this setting in which it is most important to solve instances
within a cut-off. Once again, the Kemeny ranking is not competitive amongst
the CBR-based portfolios.

These results are consistent with the expectations of experts in the field of
sat. It is regarded as a challenge to be able to select a good performing solver
for a given instance, and the choice is heavily reliant on the experience of the
user who makes this choice. Therefore, this domain is perfect for CBR, and the
results demonstrate that it is also a very useful technique to use here.

6 Conclusions and Future Work

In this paper we studied a variety of adaptation schemes for a family of CBR-
based algorithm portfolios for the sat problem. Our results demonstrate that
the choice of adaptation scheme is important for performance with schemes that
consider run time rather that relative ranking gives superior performance.

We demonstrated that a CBR approach to this task is competitive, and out-
performs individual high-performing sat solvers in a wide variety of problem



Table 5. Leader board for the Industrial category of problem instances.

Approach Solver Name Nr. Solved Cumulative Time on
Solved Instances (s)

Oracle 1 VBR 113.1 (± 2.5) 24561.0 (± 5164.6)

CBR

2 BAS 110.3 (± 3.3) 30003.9 (± 4674.8)
3 TW-BV 109.8 (± 3.0) 27742.0 (± 4430.4)
4 KEMENY 105.4 (± 3.7) 26500.6 (± 5287.4)
5 DW-BV 105.1 (± 3.4) 25699.3 (± 4611.6)
6 BV 105.0 (± 3.5) 26364.8 (± 4243.5)
7 COPELAND 104.5 (± 4.1) 26650.9 (± 5209.8)
8 COOMBS 104.2 (± 3.9) 26758.2 (± 6411.9)
9 IRV 103.6 (± 3.7) 26317.2 (± 5540.3)

10 BUCKLIN 102.6 (± 4.5) 25574.9 (± 5617.2)

SAT

11 mxc08 101.8 (± 3.9) 30144.6 (± 6091.5)
12 picosat846 96.4 (± 3.7) 29688.2 (± 6551.8)
13 rsat20 93.8 (± 4.8) 34573.7 (± 6666.6)
14 minisat20SAT07 89.8 (± 3.2) 31467.8 (± 8382.5)
15 minisat2.0 87.2 (± 2.4) 34332.8 (± 7641.0)

Table 6. Leader board for the Random category of problem instances.

Approach Solver Name Nr. Solved Cumulative Time on
Solved Instances (s)

Oracle 1 VBR 227.6 (± 1.4) 28960.0 (± 5745.6)

CBR

2 BAS 216.7 (± 3.2) 30463.4 (± 5284.6)
3 TW-BV 211.8 (± 2.6) 25250.1 (± 4005.0)
4 COOMBS 206.2 (± 3.1) 24303.7 (± 4554.8)
5 IRV 206.1 (± 3.9) 25405.7 (± 5249.5)
6 COPELAND 205.8 (± 3.1) 24590.6 (± 5769.9)
7 DW-BV 205.6 (± 3.5) 24019.9 (± 4382.9)
8 BV 205.4 (± 3.5) 23753.5 (± 4606.5)
9 BUCKLIN 203.2 (± 3.9) 24111.5 (± 5774.5)

10 KEMENY 194.0 (± 4.5) 27713.1 (± 4651.7)

SAT

11 march dl2004 149.8 (± 6.3) 38318.5 (± 4934.1)
12 gnoveltyplus 148.1 (± 6.0) 21884.0 (± 6398.8)
13 SATenstein T7 146.8 (± 6.4) 23124.2 (± 3713.5)
14 ranov 146.0 (± 6.4) 19454.8 (± 4909.5)
15 SATenstein swgcp 142.7 (± 7.5) 16795.1 (± 5327.9)



domains. A feature of the domain of sat, and constraint solving in general, is
that experience is important. This paper demonstrates that CBR has a lot to
offer the sat community.
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9. Brinker, K., Fürnkranz, J., Hüllermeier, E.: A Unified Model for Multilabel Classifi-
cation and Ranking. In: Proceedings of the 2006 European Conference on Artificial
Intelligence (ECAI 2006), IOS Press (2006) 489–493
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