
MiningZinc: A Modeling Language for Constraint-based Mining

Tias Guns1, Anton Dries1, Guido Tack2, Siegfried Nijssen1,3 and Luc De Raedt1
1 Department of Computer Science, KU Leuven {firstname.lastname}@cs.kuleuven.be

2 Caulfield School of Information Technology, Monash University guido.tack@monash.edu
3 LIACS, Universiteit Leiden snijssen@liacs.nl

Abstract
We introduce MiningZinc, a general framework for
constraint-based pattern mining, one of the most
popular tasks in data mining. MiningZinc consists
of two key components: a language component and
a toolchain component.
The language allows for high-level and natu-
ral modeling of mining problems, such that
MiningZinc models closely resemble definitions
found in the data mining literature. It is inspired
by the Zinc family of languages and systems and
supports user-defined constraints and optimization
criteria.
The toolchain allows for finding solutions to the
models. It ensures the solver independence of
the language and supports both standard constraint
solvers and specialized data mining systems. Au-
tomatic model transformations enable the efficient
use of different solvers and systems.
The combination of both components allows one
to rapidly model constraint-based mining problems
and execute these with a wide variety of methods.
We demonstrate this experimentally for a number
of well-known solvers and data mining tasks.

1 Introduction
The field of data mining has seen enormous progress, ev-
idenced by numerous successful applications and systems.
Nevertheless, it remains hard and cumbersome to tackle new
data mining problems and applications. The reasons are that
different problems are governed by different requirements
and constraints, and that most mining problems are compu-
tationally hard to solve; hence naı̈ve algorithms typically do
not work well. This explains why data mining has focussed so
much on developing specific algorithms, solutions and con-
straints, and has given less attention to the development of
generic solution strategies. There is little support for formal-
ising a mining task and capturing a problem specification in
a declarative way. Developing and implementing the algo-
rithms is labor intensive with only limited re-use of software.
The typical iterative nature of the knowledge-discovery cy-
cle [Han and Kamber, 2000] further complicates this process.

The data mining practice contrasts sharply with that of
constraint programming, where high-level languages such as
Zinc [Marriott et al., 2008], Essence [Frisch et al., 2008] and
OPL [Van Hentenryck, 1999] are used to model problems,
and general purpose solvers are provided to compute solu-
tions. Motivated by the success of this declarative approach
in constraint programming, we propose a modeling + solving
approach for data mining. This makes data mining more flex-
ible, as it becomes easy to change the model and to select the
best solvers to get solutions.

As the field of data mining is diverse, we focus in this paper
on one of the most popular tasks, namely constraint-based
pattern mining. Even for the restricted data type of binary
databases, many settings (supervised and unsupervised) and
corresponding systems have been proposed in the literature;
this makes it an adequate showcase for a declarative approach
to data mining. Dealing with a diverse set of constraint-based
pattern mining problems remains an unsolved and important
challenge in data mining.

The key contribution of this paper is the introduction of a
general-purpose, declarative mining framework called Min-
ingZinc. The design criteria for MiningZinc are:

• to support the high-level and natural modeling of pattern
mining tasks; that is, MiningZinc models should closely
correspond to the definitions of data mining problems
found in the literature;

• to support user-defined constraints and criteria such
that existing problem formulations can be extended and
modified, and novel mining tasks can be specified;

• to be solver-independent, such that the best solving
method can be selected for the problem and data at hand.
Supported methods should include both general purpose
solvers and specialized efficient mining algorithms;

• to build on and extend existing constraint programming
and data mining techniques, capitalizing on and extend-
ing the state-of-the-art in these fields.

In data mining, to date there is no framework that supports
these four design criteria. Especially the combination of
user-defined constraint and solver-independence is uncom-
mon (we defer a detailed discussion of related work to Sec-
tion 5). In the constraint programming community, however,
the design of the Zinc [Marriott et al., 2008; Nethercote et al.,
2007] family of languages and frameworks is in line with the

above criteria. The main question in this paper is hence how
to extend this framework to support constraint-based pattern
mining. We contribute: 1) a novel library of functions and
constraints to support modelling pattern mining tasks in the
MiniZinc language; 2) multiple instantiations of the library to
enable efficient solving of models; and 3) the extension of the
MiniZinc toolchain to support specialized mining algorithms
and to recognize when these algorithms can be used.

The MiningZinc framework builds on our earlier CP4IM
framework [Guns et al., 2011], which showed the feasibil-
ity of constraint programming for pattern mining. Compared
to this earlier framework, key novelties in MiningZinc are:
1) the present framework supports a wide variety of differ-
ent solvers (including DM algorithms and general purpose
solvers); 2) a significantly more high-level modeling lan-
guage is employed.

Our experiments show that MiningZinc can be highly ef-
fective for established mining tasks, while still supporting
user-defined constraints. This is possible thanks to the use
of both generic (constraint) solving algorithms and highly
specialized mining algorithms. We also demonstrate how the
integration of different solvers and algorithms in one frame-
work enables a systematic comparison of such methods.

The rest of this paper is organized as follows. In Section
2 we describe how constraint-based mining problems can be
modeled in MiningZinc. Section 3 shows how such models
can be analysed and transformed so that they can be solved
efficiently using existing constraint solvers and specialized
algorithms. In Section 4 we analyze the performance of the
MiningZinc toolchain and show that it can be used to solve
different constraint-based modeling problems and to compare
different solving strategies. Finally, Sections 5 and 6 provide
related work and conclusions.

2 Modeling constraint-based mining
In this section, we introduce constraint-based itemset mining,
show how it can be modeled in standard MiniZinc and how
MiningZinc can ease modelling. We then show a number of
different tasks modeled in MiningZinc to illustrate the gener-
ality of the approach.

2.1 Constraint-based itemset mining
Itemset mining was introduced by [Agrawal et al., 1993] and
can be defined as follows. Given is an itemset database, con-
taining a set of transactions each consisting of an identifier
and a set of items. We denote the set of transaction identifiers
as S = {1, . . . , n} and the set of all items as I = {1, . . . ,m}.
An itemset database D maps transaction identifiers t 2 S to
sets of items: D(t) ✓ I.
Definition 1 (Frequent Itemset Mining). Given an itemset
database D and a threshold Freq , the frequent itemset min-
ing problem consists of finding all itemsets I ✓ I such that
|�D(I)| > Freq , where �D(I) = {t|I ✓ D(t)}.

The set �D(I) is called the cover of the itemset, and the
threshold Freq the minimum frequency threshold. An itemset
I which has |�D(I)| � Freq is called a frequent itemset.

Constraint-based pattern mining methods can leverage ad-
ditional constraints during the pattern discovery process. One

Listing 1: ”Constraint-based mining”
1 i n t : Nr I ; i n t : NrT ; i n t : Freq ;

2 array [1 . . NrT] of set of 1 . . Nr I : TDB;

3 var set of 1 . . Nr I : I tems ;

4 constraint card (cover (Items ,TDB)) >= Freq ;

5 solve sat is fy ;

Listing 2: ”Constraint-based mining - cover”
1 function var set of i n t : cover (

2 var set of i n t : Items ,

3 array [i n t] of var set of i n t : D) = l e t {
4 var set of i ndex se t (D) : Trans ;

5 constraint f o r a l l (t in i ndex se t (D))

6 (t in Trans <�> I tems subset D[t]) ;

7 } in Trans ;

of the most fundamental and best studied problems is that of
constraint-based itemset mining [Boulicaut and Jeudy, 2010].
A lot of research has focused on how constraints, such as
the minimum frequency constraint, can be incorporated ef-
ficiently in the search process; cf. [Agrawal et al., 1993;
Mannila and Toivonen, 1997; Bonchi and Lucchese, 2007].

2.2 Itemset mining in MiniZinc
For modelling, MiningZinc builds on the MiniZinc language.
MiniZinc [Nethercote et al., 2007] is a popular restricted
version of Zinc [Marriott et al., 2008]. It it is powerful
enough to support the built-in types bool, int, set and float,
user defined-predicates, and more recently, user-defined func-
tions [Stuckey and Tack, 2013], while still being executable.

Pattern mining problems can be modeled directly in
MiniZinc. A MiniZinc model of the frequent itemset mining
problem is shown in Listing 1. Lines 1 and 2 represent the
parameters and data that can be provided through a separate
data file. It represents the items and transaction identifiers in
I and S by natural numbers (from 1 to NrI and 1 to NrT re-
spectively) and the dataset D by the array TDB, mapping each
transaction identifier to the corresponding set of items. The
set of items we are looking for is modelled on line 3 as a set
variable with elements between value 1 and NrI. The mini-
mal frequency constraint is posted on line 4, which naturally
corresponds to the formal notation |�D(I)| � Freq.

The cover function on line 4 corresponds to �D(I). An
implementation of this function is shown in Listing 2, and
closely matches the formal definition �D(I) = {t|I ✓ D(t)}.

This example demonstrates the appeal of using a modeling
language like MiniZinc for pattern mining: the formulation is
high-level, declarative and close to the mathematical notation,
it allows for user-defined constraints like the cover relation
between items and transactions, and it is solver-independent.

2.3 MiningZinc
In the example above we defined the cover function using
the primitives present in MiniZinc. An important feature of
MiniZinc is that common functions and predicates can be put
into libraries, which makes it possible to reuse them in dif-
ferent tasks. In this way, MiniZinc can be extended to dif-
ferent application domains, without the need for developing
a new language. The language component of the MiningZ-

Listing 3: “Itemset Mining constraints”
1 % Closure
2 constraint

3 I tems = cove r inv (cover (Items ,TDB) ,TDB) ;

4 % Minimum cost
5 array [1 . . Nr I] of i n t : i tem c ; i n t : Cost ;

6 constraint sum(i in I tems) (i tem c [i]) >= Cost ;

Listing 4: “High Utility mining”
1 % U t i l i t y data
2 array [1 . . Nr I] of i n t : I temPr ice ; i n t : U t i l ;

3 array [1 . . NrT , 1 . . Nr I] of i n t : UTDB;

4 constraint

5 sum (t in cover (Items ,TDB) , i in I tems) (

6 I temPr ice [i]⇤UTDB[t , i]) >= U t i l ;

7 constraint card (Items) >= 1;

8 solve sat is fy ;

Listing 5: “Discriminative itemset mining (accuracy)”
1 array [i n t] of set of i n t : D fraud ;

2 array [i n t] of set of i n t : D ok ;

3 var set of 1 . . Nr I : I tems ;

4 constraint I tems = cove r inv (

5 cover (Items , D fraud) , D fraud) ;

6 % Opt im isa t ion f u n c t i o n
7 var i n t : Score = card (cover (Items , D fraud)) �
8 card (cover (Items , D ok)) ;

9 solve maximize Score ;

inc framework is such a library that extends MiniZinc with
functions and predicates commonly used in pattern mining.

We will often write “MiningZinc model” to describe a
MiniZinc model that uses elements of the MiningZinc library.

2.4 More examples
Let us now illustrate the use of the MiningZinc library on
three diverse but representative tasks.

Itemset Mining with constraints. Listing 3 contains some
examples of constraint-based mining constraints that can be
added to the frequent itemset mining model in Listing 1. Line
3 represents the popular closure constraint I = D(�D(I)),
where D(T) = {i 2 I|8t 2 T : i 2 D(t)}. This closure
constraint, together with a minimum frequency constraint,
represents the closed itemset mining problem [Pasquier et al.,
1999]. “cover inv” is part of our MiningZinc library and cor-
responds to D(T).

Lines 5/6 represent a common cost-based constraint
[Bonchi and Lucchese, 2007]; it constrains the itemset to
have a cost of at least Cost, with item cost and Cost

being a user-supplied array of costs and a cost threshold.
We can use the full expressive power of MiniZinc to de-

fine constraints. This includes constraints in propositional
logic, for example expressing implications between (groups
of) items/transactions, or inclusion/exclusion relations be-
tween elements. Constraints can involve external data too,
as exemplified with a constraint on item costs.

High Utility mining In high utility mining [Chan et al., 2003]
the goal is to search for itemsets with a total utility above
a certain threshold. Assumed given is an external utility e
for each individual item, for example its price, and a util-
ity matrix U that contains for each transaction a local utility

of each item in the transaction, for example the quantity of
that item in that transaction. The total utility of an itemset isP

t2�D(I)

P
i2I e(i)U(t, i).

Listing 4 shows the MiningZinc model corresponding to
this task. Lines 2 and 3 declare the data, and lines 4 to 6
constrain the utility.

Discriminative itemset mining is the task of finding the
itemset for which the coverage shows the strongest corre-
lation with a given class attribute. Consider for example a
transaction database with fraudulent transactions and non-
fraudulent ones, and the task of finding itemsets correlating
with fraudulent behaviour. Many different measures can be
used to define what a good correlation is. This has led to tasks
known as discriminative itemset mining, correlated itemset
mining, subgroup discovery, contrast set mining and more
[Novak et al., 2009]; a modeling language would be useful
to allow for the implementation of these variants.

A discriminative itemset mining task is shown in Listing 5.
This is an optimisation problem, and the score to optimise is
defined on line 7. The score is p � n where p is the number
of positive transactions covered and n the number of negative
ones. Optimising this score (line 9) corresponds to optimis-
ing the accuracy measure; see [Fürnkranz and Flach, 2005]
for more details. An additional constraint ensures that the
patterns are closed, but only on the transactions in the fraud-
ulent transactions (one can show that there must always be a
closed itemset that maximizes this core). Note how we reuse
the functions from Listing 1 for this different task.

3 Solving MiningZinc models
The language discussed in the previous section is solver-
independent; at no point did we discuss how to find solu-
tions for the models. In principle, we could now use the
existing MiniZinc toolchain to find solutions for these mod-
els. This can be achieved by adding an implementation of
the MiningZinc library using standard MiniZinc constructs.
However, this rather straight-forward approach does not re-
sult in very effective solving.

For example, the models in the previous section are for-
mulated with constraints on set variables. This is the most
natural approach to model constraint-based mining problems.
However, from past work [Guns et al., 2011] it is known
that a Boolean representation of the sets is more efficient.
More is known about how to efficiently solve such problems,
such as reformulations of constraints. Furthermore, for cer-
tain solvers it might be better to encode some constraints in a
different way.

Hence, a more powerful solution would be one in which
different low-level representations can be used for the same
high-level model; furthermore, it would be desirable to in-
clude specialized data mining algorithms in the toolchain.
Our extensions achieve this.

Specifically, we employ three approaches to improve per-
formance:

1. Model transformations: By providing different versions
of the MiningZinc library we can transform the given
models into optimized variants for different types of
solvers.

2. Use of specialized solvers: There exist highly opti-
mized and scalable algorithms for constraint-based item-
set mining. The MiningZinc toolchain can analyze the
models provided, and determine whether there are spe-
cialized algorithms that can solve (part of) the given
model.

3. A portfolio of solvers: Using static analysis techniques,
MiningZinc can determine what transformation/solver
combinations are capable of solving the model. Hence,
it offers a portfolio of solvers, including general solvers
and specialised algorithms, from which to choose.

3.1 Model transformations
An overview of the MiningZinc toolchain is given in Figure 1.

It makes extensive use of the existing MiniZinc toolchain.
The main benefit of the standard MiniZinc toolchain (top-
right of Figure 1) is that it transforms a model to FlatZinc,
a solver-specific language that is supported by a large num-
ber of constraint solvers. This solver-specificity is obtained
by including a solver-specific library. During the transfor-
mation from MiniZinc to FlatZinc, the MiniZinc toolchain
replaces the functions and predicates in the libraries by their
corresponding body. This includes the solver-specific trans-
formations (T

solver

in Figure 1). More details on these trans-
formations can be found in [Stuckey and Tack, 2013].

Remember that the MiningZinc language is MiniZinc
with the addition of the MiningZinc library. Given a
MiningZinc model, data and the MiningZinc library, the
MiniZinc toolchain will transform the model into FlatZinc,
which can then be fed into a constraint solver. Any constraint
solver that supports FlatZinc with integer variables can then
be used. For many mining tasks, it is also required that the
solver can enumerate all solutions.

The MiningZinc library embeds best-practices in
constraint-based mining, as found in the CP4IM frame-
work [Guns et al., 2011]. For instance, in this earlier work
it was found that the minimum frequency constraint can
be specified as card(cover(Items,TDB)) >= Freq but it can
also be equivalently formulated over every item separately,
resulting in better propagation.

To also support the use of a Boolean representation of the
sets, we have developed two instantiations of the MiningZinc
library: one that operates on the set variables (T

set

in Fig-
ure 1) and one that converts the sets into Boolean arrays and
posts the constraints on these Boolean arrays (T

bool

).
For T

bool

, we exploit MiniZinc’s ability to redefine built-in
predicates in a library. In the redefinition, each set variable is
linked to an array of Booleans, and the equivalent predicate
on the Boolean representation is called. By virtue of common
subexpression elimination, each set variable will only have
one corresponding Boolean array of variables.

Apart from this generic set-to-boolean transformation, the
Boolean instantiation of the MiningZinc library takes care not
to introduce unnecessary copies of decision variables. For ex-
ample, for the constraint card(Items intersect {1,...}) there
is no need to represent the intersection using a new copy of
Items, rather, a subset of the Boolean variables representing
Items can be used directly to calculate the cardinality. The

MiningZinc input

MiningZinc
model

Data

+

M
in

in
gZ

in
c

lib
ra

ry

standard MiniZinc toolchain

MiniZinc
model

FlatZinc
model

CP
solvers

MiniZinc
model

FlatZinc
model

Solver
Detection

DM
systems

T
set

T
bool

T
solver

T
pred

Figure 1: Overview of the MiningZinc toolchain

search strategy is also instantiated to an appropriate heuristic
over the Boolean variables.

Section 4 will show how MiningZinc models that are au-
tomatically transformed to Boolean variables match the per-
formance of hand-made MiniZinc models over Boolean vari-
ables.

3.2 Use of specialized algorithms
Data mining algorithms are typically highly efficient on one
specific task. Even constraint-based mining algorithms only
support a small number of related tasks. MiningZinc on the
other hand is a general, solver-independent language for ex-
pressing constraint-based mining problems. Hence, we want
to be able to plug in specialized mining algorithms as back-
end solvers. The main challenge is to determine whether a
MiningZinc model can be solved (partially) using such an ex-
isting data mining algorithm.

Our approach is depicted in Figure 1 (bottom). We first
transform the model into FlatZinc predicates. In the solver
detection step, we convert the predicates to (Prolog) facts
over which we then reason using resolution. As we would
like to reason over the high-level predicates and functions in
the model, we want to avoid decomposing the constraints in
the conversion to FlatZinc. To this end, we provide a third in-
stantiation of the MiningZinc library, T

pred

. It transforms all
the functions to predicates, and leaves all predicates unimple-
mented. Furthermore, we do not specify any solver-specific
library, thereby again avoiding the decomposition of predi-
cates.

Converting the FlatZinc into facts is then a matter of filter-
ing out the constraints and removing FlatZinc keywords and
possible annotations. For example, a model describing the
frequent itemset mining problem (e.g. Listing 1 with Freq set
to 20) can be transformed into the following set of facts.

cover(Items, TDB, Aux1).

card_set(Aux1, Aux2).

int_lq(20, Aux2).

To reason over the model, we describe the capabilities of a
data mining algorithm by specifying which combinations of
constraints (facts) they can handle. For example, an algorithm
capable of solving the frequent itemset mining problem can
be described by the following Prolog clause:

im_frequent(TDB, Freq, Items, Cover) :-

cover(Items, TDB, Cover),

card_set(Cover, Size),

int_lq(Freq, Size).

Table 1: Overhead of solver detection, runtime in seconds.
#Tr=nr. of transactions, #It = nr. of items, %D = density

Dataset #Tr #It %D Freq Fr+Clo Fr+Clo+
Mincost

zoo-1 101 36 44% 0.049 0.051 0.085
primary-tumor 336 31 48% 0.057 0.060 0.090
soybean 630 50 32% 0.090 0.090 0.159
german-credit 1000 110 35% 0.142 0.150 0.273
hypothyroid 3247 86 50% 0.337 0.347 0.451
mushroom 8124 112 19% 0.424 0.471 0.551
pumsb star 49046 2088 2.4% 8.513 8.710 21.842
retail 88162 16470 0.1% 2.549 2.765 57.205
T10I4D100K 100000 870 1.2% 2.689 3.471 3.006
T40I10D100K 100000 942 4.2% 8.952 9.306 10.146

By evaluating this clause on the set of facts above, we see that
(part of) the model matches with the frequent itemset mining
problem. Furthermore, we can extract parameters from the
model (e.g. the frequency threshold Freq), to provide it to a
mining algorithm for example.

Note that many constraints can be specified in different
ways. For example, the cover constraint could be for-
mulated over every item separately, instead of using the
MiningZinc function. A set of background predicates that
contain alternative formulations of the MiningZinc predi-
cates, as well as alternative formulations of FlatZinc predi-
cates, is used to make the detection mechanism more robust.

A data mining algorithm can only be used directly, with-
out post-processing, if the rewritten query conforms exactly
to the original conjunctive query, that is, there are no extra
constraints (facts). However, the ability to detect whether a
part of a MiningZinc model conforms to a supported mining
task can also be exploited to create a hybrid approach.

3.3 A portfolio of solvers

Using the above transformations, it is possible to use both
generic constraint solvers (potentially with different transfor-
mations) and specialised mining algorithms. A third option is
to use a hybrid approach, where part of the model is solved
using one method, and another part by another method.

For example, most existing data mining algorithms are
highly efficient but support only a few constraints. When
faced with a new, e.g. domain specific, constraint, one has
to (tediously) modify the algorithm. A popular alternative is
to write a post-process routine, reusing the highly efficient al-
gorithm without having to change it. In MiningZinc, should
part of a model be supported by a mining algorithm, we have
the unique ability to first use that algorithm to solve the sub-
problem, after which each of the solutions can be verified
against the full model using a constraint solver to check the
constraints. The same high-level language can thus be used
to express all constraints. MiningZinc users need not even
be aware which constraints are supported by which mining
algorithms.

The current MiningZinc framework can detect which
solvers are supported, and provide the user with a list of solv-
ing strategies. The use of automatic portfolio selection tech-
niques [Xu et al., 2008; Malitsky and Sellmann, 2012] is a
promising direction for further research.

Figure 2: Solve and compile times for frequent itemset min-
ing; increasingly large and sparse datasets.

00.10.20.30.40.5
0

20

40

60

Min. frequency, zoo dataset

R
un

tim
e

(s
)

Mngzn solve
Mngzn compile

00.10.20.30.40.5
0

20

40

60
Handmade solve

Handmade compile

00.10.20.30.40.5
0

50

100

150

Min. frequency, primary-tumor dataset

Mngzn solve
Mngzn compile

00.10.20.30.40.5
0

50

100

150 Handmade solve
Handmade compile

0.30.350.40.450.5
0

100

200

300

400

Min. frequency, german-credit dataset

R
un

tim
e

(s
)

Mngzn solve
Mngzn compile

0.30.350.40.450.5
0

100

200

300

400 Handmade solve
Handmade compile

0.10.20.30.40.5
0

200

400

600

800

1,000

Min. frequency, mushroom dataset

Mngzn solve
Mngzn compile

0.10.20.30.40.5
0

200

400

600

800

1,000 Handmade solve
Handmade compile

4 Experiments
We now compare the different solving strategies that
MiningZinc supports. We focus on two main questions: 1)
what is the computational overhead of using MiningZinc,
compared to manually writing low-level specifications or
calling solvers; 2) what are the strengths and weaknesses of
the different solving strategies.

The constraint solvers used are the g12 solvers that are
part of the MiniZinc 1.6 distribution [Nethercote et al., 2007]
and Gecode 3.7.3 [Schulte et al., 2013]. The constraint-
based mining algorithms are LCM version 2 and 5[Uno et
al., 2004] and Christian Borgelt’s implementations of Apriori
(v5.73), Eclat (v3.74) and FPGrowth (v4.48) [Borgelt, 2012];
these are state-of-the art for efficient constraint-based mining.
The datasets are from the UCI Machine Learning repository
[Frank and Asuncion, 2010]1 and from the FIMI repository
[Goethals and Zaki, 2004]. Experiments were run on comput-
ers with quad-core Intel i7 processors and 16Gb of ram. The
MiningZinc system and datasets used can be downloaded at
http://dtai.cs.kuleuven.be/CP4IM/miningzinc/.

4.1 Overhead of MiningZinc transformations
We first measure the difference in runtime between a fine-
tuned hand-made MiniZinc model over Booleans and a
MiningZinc model over sets that is transformed to Booleans
(T

bool

in Figure 1). The top of Figure 2 shows, for increas-
ingly large datasets, the solve and compile times for standard
frequent itemset mining. Solve times are comparable though
slightly slower for MiningZinc, because the automatic trans-
formation introduces a few more auxiliary variables. Com-
pile times are not influenced by the frequency threshold but
do increase with dataset size. We believe this is due to inef-
ficiencies in the FlatZinc transformation tool, which has not
been tested under this load before. The observed behavior is
similar for more complex tasks.

1Downloaded from http://dtai.cs.kuleuven.be/CP4IM/datasets/

Table 2: Discriminative itemset mining runtimes
Dataset g12CPX Gecode Gecode g12CPX g12Mip

set bool set bool bool
anneal 1.1 20.61 37.25 20 ERR
audiology 0.21 2.01 0.22 2.14 72.85
australian-credit 1.22 52.74 74.15 129.51 ERR
german-credit 2.25 164.33 192.85 917.48 ERR
heart-cleveland 0.89 45.57 55.71 132.99 >1800
hepatitis 0.13 1.54 1.4 1.7 134.39
hypothyroid 15.22 485.07 917.9 674.27 ERR
kr-vs-kp 35.28 835.49 >1800 717.25 ERR
lymph 0.13 0.86 0.34 1.18 >1800
mushroom 56.64 376.3 78.32 293.84 ERR
primary-tumor 0.22 1.41 1.21 2.09 516.35
soybean 0.29 2.74 0.34 3.66 1160.70
splice-1 161.29 619.03 224.03 >1800 ERR
tic-tac-toe 0.68 2.76 0.66 3.06 >1800
vote 0.26 1.93 0.38 2.13 277.81
zoo-1 0.05 0.24 0.09 0.32 0.50
Total runtime 275.88 2612.66 3384.87 4701.63 20162.61

4.2 Overhead of DM solver detection
Table 1 shows, for increasingly large datasets, the overhead
of converting the MiningZinc model into facts, and using
Prolog to match the definitions of the mining tasks (Sec-
tion 3.2) against it. The models used are combinations of
the constraints shown in Listing 1 (Freq/Fr) and Listing 3
(Clo+MinCost).

Solving times are not shown as the input to the miners is
what one would manually provide. The table shows that the
overhead is rather low and increases with the complexity of
task and the data. Note that mincost constrains the items, and
hence is more sensitive to the number of items in the data.

4.3 Differences in CP encodings and solvers
We compare the use of set variables with the automatic trans-
lation to Boolean variables for a number of FlatZinc solvers.
Figure 3 shows total running times (including compilation)
on a few representable datasets for the representable task of
closed frequent itemset mining. We observe that the Boolean
encoding leads to lower runtimes as expected. In some cases
though (as can be seen in the two plots on the right for high
frequency values), the set encoding is faster, though it scales
less well to lower frequency values. Using the Boolean en-
coding, the Gecode solver is consistently the fastest. One
advantage of Gecode could be that it supports the occurence
variable ordering, this strategy searches over the most con-
strained variable first, which is related to searching over the
least frequent items first [Guns et al., 2011], a search strategy
known to perform well. The g12Lazy solver often returned
duplicate solutions for low frequency thresholds.

Table 2 compares runtimes for the discriminative itemset
mining task in Listing 5. It is an optimisation problem, which
allows us to use the g12MIP solver. Unfortunately it suffers
from memory problems on this task. g12FD and g12Lazy
(not shown) have a total runtime around 8000 seconds. Inter-
estingly, g12CPX using set variables is by far the fastest on
this task, demonstrating that different solvers and encodings
can be beneficial on different tasks.

4.4 Solvers across tasks
A framework such as MiningZinc allows for a system-
atic comparison of constraint solvers and mining algorithms

Table 3: Best solution method per task; between brackets is
the sum of average runtime per dataset in seconds.

Task Best solver Second Best
Frequent B-Fpgrowth (1480) B-Eclat (1570)
Fr + closed LCMv2 (1026) LCMv5 (2244)
Fr + cl + minsize LCMv5 (1820) B-Eclat (3037)
Discriminative g12CPX (275) Gecode-bool (2612)

across tasks and datasets. As can be witnessed in Table 3, the
constraint-based itemset mining algorithms are significantly
faster and more scalable than constraint solvers for the tasks
they support. For other tasks, such as discriminative itemset
mining, constraint solvers can be used with reasonable suc-
cess, without having to implement new algorithms.

Experiments with a hybrid approach are not competitive at
this point and not shown. The naive approach of checking
each solution found by a mining algorithm against all con-
straints (including all the data) using a constraint solver re-
quires more time than having a constraint solver search all
solutions directly.

The main bottleneck for the constraint solvers remains the
scalability towards large datasets. Figure 4 shows the run-
times of different algorithms for frequent itemset mining (the
two plots on the left) and closed itemset mining (the two on
the right). In these figures, CP4IM is a precompiled Gecode
model for the task at hand.2 Its performance is remarkably
closer to that of specialised mining algorithms than the per-
formance of using Gecode as a FlatZinc backend.

5 Related work
We have introduced MiningZinc, a framework for constraint-
based pattern mining. Its key design criteria are 1) high-level
and natural modeling of mining tasks, 2) support for user-
defined constraints, 3) solver-independence and 4) building
on existing languages and systems.

In the data mining field, our work is related to that on
inductive databases [Mannila, 1997]; these are databases in
which both data and patterns are first-class citizens and can
be queried. Most inductive query languages, e.g., [Meo et al.,
1996; Imielinski and Virmani, 1999], extend SQL with primi-
tives for pattern mining. They have only a restricted language
for expressing mining problems, and are usually tied to one
mining algorithm. A more advanced development is that of
mining views [Blockeel et al., 2012], which provides lazy ac-
cess to patterns through a virtual table. Standard SQL can be
used for querying, and the implementation will only materi-
alise those patterns in the table that are relevant for the query.
This is realized using a traditional mining algorithm.

Work on constraint solving for itemset mining [Guns et
al., 2011; Järvisalo, 2011] has used existing modeling lan-
guages. However, these approaches were low-level and solver
dependent. The use of higher-level modeling languages and
primitives has been studied before [Métivier et al., 2012;
Guns et al., 2013], though again tied to one particular solving
technology. MiningZinc on the other hand enables the use of
both general constraint solvers and highly optimized mining
algorithms. Best practices from solver-specific studies, such

2Obtained from http://dtai.cs.kuleuven.be/CP4IM/

Figure 3: Different CP solvers with bool/set encoding.

00.10.20.30.40.5

100

101

102

103

Frequency

R
un

tim
e

(s
)

Closed frequent, primary-tumor

0.10.20.30.40.5

101

102

103

Frequency

Closed frequent, heart-cleveland

00.10.20.30.40.5

100

101

102

103

Frequency

Closed frequent, soybean

00.10.20.30.40.5

102

103

Frequency

Closed frequent, mushroom

Gecode (bool) Gecode (set) g12FD (bool) g12FD (set) g12CPX (bool) g12CPX (set) g12Lazy (bool)

Figure 4: Different DM solvers (Gecode (bool) timed out on the right-most figure)

00.10.20.30.40.5

10�2

10�1

100

101

102

103

Frequency

R
un

tim
e

(s
)

Min. frequency, hepatitis dataset

0.10.20.30.40.5

10�2

10�1

100

101

102

103

Frequency

Min. frequency, heart-cleveland dataset

00.10.20.30.40.5

10�2

10�1

100

101

102

103

Frequency

Closed frequent, heart-cleveland

00.10.20.30.40.5
100

101

102

103

Frequency

Closed frequent, accidents

Gecode (bool) CP4IM B-Apriori LCMv5 LCMv2 B-Eclat B-Fpgrowth

as the use of SAT solvers for itemset mining [Henriques et
al., 2012], could be incorporated into MiningZinc too.

We chose Zinc [Nethercote et al., 2007] as the basis of our
work because it is most in line with our design criteria. Other
languages such as Essence [Frisch et al., 2008], Comet [Van
Hentenryck and Michel, 2005] and OPL [Van Hentenryck,
1999] have no, or only limited, support for building libraries
of user-defined constraints, and/or are tied to a specific solver.

Automatic transformation is a well-studied topic in con-
straint programming [Flener et al., 2003; Frisch et al.,
2005].By building on MiniZinc, we can benefit from these
advancements too. To the best of our knowledge, the applica-
tion of automatic model transformations to constraint-based
mining has not been studied before.

In contrast to MiniZinc, full Zinc compiles a model inde-
pendent of the instance data (such as the itemset database).
Data-independent transformation could be a promising alter-
native; for example the detection of mining algorithms in Sec-
tion 3.2 does not require the actual data until the final step;
a data-independent transformation could also reduce the in-
curred overhead further.

6 Conclusions
MiningZinc is based on the declarative modeling + solving
approach from the field of constraint programming and it
promises to bring its benefits to the field of data mining.

Further benefits of the constraint programming methodol-
ogy include the possible emergence of standard languages
and integrated systems for modeling and solving data min-
ing problems, which facilitate the comparison of different al-
gorithms and the re-use of software. It also opens the way
to solver selection techniques for data mining. Data mining

also raises new challenges for constraint programming as the
solutions offered by the modeling + solving approach should
be competitive with that of standard data mining algorithms.
This is non-trivial because data mining algorithms are highly
optimized for specific tasks and large datasets, while generic
constraint solvers may struggle in particular with the size of
the problems.

Acknowledgements. This work was supported by the Research
Foundation—Flanders by means of a Postdoc grant and the project
“Principles of Patternset Mining” and by the European Commis-
sion under the project “Inductive Constraint Programming”, con-
tract number FP7-284715, as well as the KU Leuven GOA 13/010
“Declarative Modeling Languages for Machine Learning and Data
Mining”. NICTA is funded by the Australian Department of Broad-
band, Communications and the Digital Economy and the Australian
Research Council.

References
[Agrawal et al., 1993] Rakesh Agrawal, Tomasz Imielinski,

and Arun N. Swami. Mining association rules between
sets of items in large databases. In SIGMOD, pages 207–
216. ACM Press, 1993.

[Blockeel et al., 2012] Hendrik Blockeel, Toon Calders,
Élisa Fromont, Bart Goethals, Adriana Prado, and Céline
Robardet. An inductive database system based on virtual
mining views. Data Min. Knowl. Discov., 24(1):247–287,
2012.

[Bonchi and Lucchese, 2007] Francesco Bonchi and Clau-
dio Lucchese. Extending the state-of-the-art of constraint-
based pattern discovery. Data Knowl. Eng., 60(2):377–
399, 2007.

[Borgelt, 2012] Christian Borgelt. Frequent item set mining.
Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 2(6):437–456, 2012.

[Boulicaut and Jeudy, 2010] J.-F. Boulicaut and B. Jeudy.
Constraint-based data mining. In Data Mining and Knowl-
edge Discovery Handbook, pages 339–354. 2010.

[Chan et al., 2003] Raymond Chan, Qiang Yang, and Yi-
Dong Shen. Mining high utility itemsets. In ICDM, pages
19–26, November 2003.

[Flener et al., 2003] Pierre Flener, Justin Pearson, and Mag-
nus Ågren. Introducing ESRA, a relational language for
modelling combinatorial problems. In LOPSTR, volume
3018 of LNCS, pages 214–232. Springer, 2003.

[Frank and Asuncion, 2010] A. Frank and A. Asuncion. UCI
machine learning repository, 2010. Available from
http://archive.ics.uci.edu/ml.

[Frisch et al., 2005] Alan Frisch, Christopher Jefferson,
Bernadette Martı́nez Hernández, and Ian Miguel. The
rules of constraint modelling. In IJCAI, pages 109–116.
Professional Book Center, 2005.

[Frisch et al., 2008] Alan Frisch, Warwick Harvey, Christo-
pher Jefferson, Bernadette M. Hernández, and Ian Miguel.
Essence: A constraint language for specifying combinato-
rial problems. Constraints, 13(3):268–306, 2008.

[Fürnkranz and Flach, 2005] Johannes Fürnkranz and Pe-
ter A. Flach. ROC ’n’ rule learning – towards a better
understanding of covering algorithms. Machine Learning,
58(1):39–77, 2005.

[Goethals and Zaki, 2004] Bart Goethals and Mohammed J.
Zaki. Advances in frequent itemset mining implementa-
tions: report on FIMI’03. In SIGKDD Explorations, vol-
ume 6, pages 109–117, 2004.

[Guns et al., 2011] Tias Guns, Siegfried Nijssen, and Luc De
Raedt. Itemset mining: A constraint programming per-
spective. Artif. Intell., 175(12-13):1951–1983, 2011.

[Guns et al., 2013] Tias Guns, Siegfried Nijssen, and Luc De
Raedt. k-pattern set mining under constraints. IEEE
TKDE, 25(2):402–418, 2013.

[Han and Kamber, 2000] Jiawei Han and Micheline Kamber.
Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2000.

[Henriques et al., 2012] Rui Henriques, Inês Lynce, and
Vasco M. Manquinho. On when and how to use SAT to
mine frequent itemsets. CoRR, abs/1207.6253, 2012.

[Imielinski and Virmani, 1999] Tomasz Imielinski and
Aashu Virmani. MSQL: A query language for database
mining. Data Mining and Knowledge Discovery,
3:373–408, 1999.

[Järvisalo, 2011] Matti Järvisalo. Itemset mining as a
challenge application for answer set enumeration. In
Logic Programming and Nonmonotonic Reasoning, vol-
ume 6645 of LNCS, pages 304–310. Springer, 2011.

[Malitsky and Sellmann, 2012] Yuri Malitsky and Meinolf
Sellmann. Instance-specific algorithm configuration as

a method for non-model-based portfolio generation. In
CPAIOR, pages 244–259, 2012.

[Mannila and Toivonen, 1997] Heikki Mannila and Hannu
Toivonen. Levelwise search and borders of theories
in knowledge discovery. Data Min. Knowl. Discov.,
1(3):241–258, 1997.

[Mannila, 1997] Heikki Mannila. Inductive databases and
condensed representations for data mining. In ILPS, pages
21–30, 1997.

[Marriott et al., 2008] Kim Marriott, Nicholas Nethercote,
Reza Rafeh, Peter J. Stuckey, Maria Garcia De La Banda,
and Mark Wallace. The design of the Zinc modelling lan-
guage. Constraints, 13(3):229–267, September 2008.

[Meo et al., 1996] Rosa Meo, Giuseppe Psaila, and Stefano
Ceri. A new SQL-like operator for mining association
rules. In VLDB, pages 122–133, 1996.

[Métivier et al., 2012] Jean-Philippe Métivier, Patrice
Boizumault, Bruno Crémilleux, Mehdi Khiari, and Samir
Loudni. A constraint language for declarative pattern
discovery. SAC ’12, pages 119–125. ACM, 2012.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J.
Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. Minizinc: Towards a standard CP
modelling language. In CP, volume 4741 of LNCS, pages
529–543. Springer, 2007.

[Novak et al., 2009] Petra K. Novak, Nada Lavrac, and Ge-
offrey I. Webb. Supervised descriptive rule discovery: A
unifying survey of contrast set, emerging pattern and sub-
group mining. J. Mach. Learn. Res., 10:377–403, 2009.

[Pasquier et al., 1999] Nicolas Pasquier, Yves Bastide, Rafik
Taouil, and Lotfi Lakhal. Discovering frequent closed
itemsets for association rules. In Database Theory, vol-
ume 1540 of LNCS, pages 398–416. Springer, 1999.

[Schulte et al., 2013] Christian Schulte, Guido Tack, and
Mikael Lagerkvist. Gecode, a generic constraint devel-
opment environment, 2013. www.gecode.org.

[Stuckey and Tack, 2013] PeterJ. Stuckey and Guido Tack.
Minizinc with functions. In Carla Gomes and Meinolf
Sellmann, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization
Problems, volume 7874 of Lecture Notes in Computer Sci-
ence, pages 268–283. Springer Berlin Heidelberg, 2013.

[Uno et al., 2004] Takeaki Uno, Masashi Kiyomi, and Hi-
roki Arimura. Lcm ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets. In FIMI, volume 126
of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[Van Hentenryck and Michel, 2005] Pascal Van Hentenryck
and Laurent Michel. Constraint-Based Local Search. MIT
Press, 2005.

[Van Hentenryck, 1999] Pascal Van Hentenryck. The OPL
optimization programming language. MIT Press, 1999.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT. J. Artif. Intell. Res., 32:565–606, 2008.

