
DEMON: a Local-First Discovery Method
for Overlapping Communities

Michele Coscia
CID - Harvard Kennedy School

79 JFK Street, Cambridge, MA, US
michele_coscia@hks.harvard.edu

Giulio Rossetti
KDDLab University of Pisa

Largo B. Pontecorvo 3, Pisa, Italy
giulio.rossetti@isti.cnr.it

Fosca Giannotti
KDDLab ISTI-CNR

Via G. Moruzzi 1, Pisa, Italy
fosca.giannotti@isti.cnr.it

Dino Pedreschi
KDDLab University of Pisa

Largo B. Pontecorvo 3, Pisa, Italy
pedre@di.unipi.it

ABSTRACT
Community discovery in complex networks is an interest-
ing problem with a number of applications, especially in
the knowledge extraction task in social and information net-
works. However, many large networks often lack a particular
community organization at a global level. In these cases, tra-
ditional graph partitioning algorithms fail to let the latent
knowledge embedded in modular structure emerge, because
they impose a top-down global view of a network. We pro-
pose here a simple local-first approach to community dis-
covery, able to unveil the modular organization of real com-
plex networks. This is achieved by democratically letting
each node vote for the communities it sees surrounding it in
its limited view of the global system, i.e. its ego neighbor-
hood, using a label propagation algorithm; finally, the local
communities are merged into a global collection. We tested
this intuition against the state-of-the-art overlapping and
non-overlapping community discovery methods, and found
that our new method clearly outperforms the others in the
quality of the obtained communities, evaluated by using the
extracted communities to predict the metadata about the
nodes of several real world networks. We also show how our
method is deterministic, fully incremental, and has a lim-
ited time complexity, so that it can be used on web-scale
real networks.

Categories and Subject Descriptors
I.5.3 [Clustering]: Algorithms

Keywords
complex networks, data mining, community discovery

1. INTRODUCTION
Complex network analysis has emerged as one of the most

exciting domains of data analysis and mining over the last

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

decade. One of the most prolific sub field is community dis-
covery in complex network, or CD in short. The concept of
a “community” in a (web, social, or informational) network
is intuitively understood as a set of individuals that are very
similar, or close, to each other, more than to anybody else
outside the community [6]. This has often been translated in
network terms into finding sets of nodes densely connected
to each other and sparsely connected with the rest of the
network. Community discovery can be seen as a network
variant of traditional data clustering. To efficiently detect
these structures is very useful for a number of applications,
ranging from targeted vaccinations and outbreak prevention
[23], to viral marketing [16] and to many web data analysis
tasks such as finding tribes in online information exchanges
[12, 25], data compressing, clustering [4] and sampling [14].

The classical problem definition of community discovery
finds a very intuitive counterpart for small networks, where
the denser areas are easily identifiable by visual inspection,
while the problem becomes much harder for medium and
large scale networks. At the global level, very little can be
said about the modular structure of the network, because on
larger scales the organization of the system becomes simply
too complex. The friendship graph of Facebook includes
more than 845 millions nodes as of February 20121, but the
difficulty of the CD task can be appreciated even considering
a tiny fragment of the Facebook friendship graph, illustrated
in Figure 1(a). We depicted the connections among 15,000
nodes, i.e., less than 0.002% of the total network. Even in
this small subset of the network, no evident organization can
be identified easily. Big networks are not analyzable with
the naked eye. Very often, a visualization of ten thousands
nodes results in a structureless hairball. In cases like this,
also generic community discovery algorithms tend to return
not meaningful communities, as they typically try to cluster
the whole structure and return some huge communities and
a long list of small branches (see [6]). Often, superimposing
an order with a top-down approach leads to failure.

On the contrary, human eyes are good in finding denser ar-
eas in simple networks, i.e., the structure of cohesive groups
of nodes that emerge considering a local fragment of an oth-
erwise big network. But what does local mean? Common-
sense goes that people are good at identifying the reasons
why they know the people they know; therefore, each node

1http://newsroom.fb.com/content/default.aspx?NewsAreaId=22

615

(a) A global view of the Facebook
graph from 15k users.

(b) The “ego minus ego” network of
one Facebook user among the 15k.

Figure 1: The real world example of the “local vs global” structure intuition.

has presumably an incomplete, yet clear, vision of the so-
cial communities it is part of, and that surrounds it. The
consequences of exploiting this idea for the CD problem is
effectively illustrated by Figure 1(b). Here, we chose one
of the 15k nodes from the previous example and extracted
what we call its “ego minus ego” network, i.e. its ego net-
work in which the ego node has been removed, together with
all its attached edges. Suddenly, everything around the ego
makes sense and some groups can be easily spotted. These
groups correspond to the high school and university friends,
mates from different workplaces and the members of an on-
line community (we know all these details because the chosen
ego is one of the authors of this paper). The ego is part of
all these communities and knows that particular subsets of
its neighborhood are part of these communities too. Proba-
bly, different egos have different perspectives over the same
neighbors and it is the union of all these perspectives that
creates an optimal partition of the network. In other words:
if node A and node B are considered in the same communi-
ties by all the nodes connected to both A and B, then they
should be grouped in the same community. This is achieved
by a democratic bottom-up mining approach: in turn, each
node gives the perspective of the communities surrounding
it and then all the different perspectives are merged together
in an overlapping structure.

In the vast CD literature, the general approach for the
detection of the modular structure of a network is usually
to develop a particular (greedy) algorithm, testing a general
quality function with a particular heuristic and then return
a set of communities extracted from the global structure (we
discuss some of these methods in Section 2). This approach
generally fails for large networks due to the difference in
structural organization at global and local scale. To cope
with this difficulty, we propose a change of mentality. Since
our community definition works perfectly in the small scale,
then it should be applied only at this small scale. We pro-
pose a simple local-first approach to community discovery
in complex networks by letting the hidden modular organi-
zation of a network emerge from local patterns.

Essentially, we adopt a democratic approach to the dis-

covery of communities in complex networks. We ask each
node to vote for the communities present in its local view
of the network. For this reason, we chose to name our algo-
rithm Democratic Estimate of the Modular Organization
of a Network, or DEMON in short. In practice, we extract
the ego network of each node and apply a Label Propagation
CD algorithm [21] on this structure, ignoring the presence
of the ego itself, that will be judged by its peers neighbors.
We then combine, with equity, the vote of everyone in the
network. The result of this combination is a set of (over-
lapping) modules, the guess of the real communities in the
global system, made not by an external observer, but by the
actors of the network itself. Our democratic algorithm is in-
cremental, allowing to recompute the communities only for
the newly incoming nodes and edges in an evolving network.
Nevertheless, DEMON has also a low theoretical linear time
complexity. The main core of our method has also the inter-
esting property of being easily parallelizable, since only the
ego network information is needed to perform independent
computations, and it can be easily combined in a MapRe-
duce framework [7]; although the post-process Merge pro-
cedure is not trivially solvable in a MapReduce framework
(and for this reason we leave a discussion about the parallel
implementation as future work). The properties of DEMON
support its use in massive real world scenarios.

We provide an extensive empirical validation of DEMON.
In our experimental setting, we are particularly interested
in investigating what useful knowledge we can discover. We
test the results obtained with our method against selected
state-of-the-art algorithms, both overlapping and not over-
lapping, since we believe that the possibility to cluster the
same nodes in different communities is one of the crucial
properties that a community discoverer should allow: on-
line social networks have proved that individuals are part of
many different communities and groups of interest. To eval-
uate this knowledge, we make use of a multilabel predictor
fed with the extracted communities as input, with the aim of
correctly classifying the metadata attached to the nodes in
real life. Our datasets include the international store Ama-
zon, the database of collaborations in movie industry IMDb,

616

and the register of the activities of the US Congress Gov-
Track.us.

The rest of the paper is organized as follows: in Section 2
we present related works in community discovery literature.
Section 3 is dedicated to the problem representation and
definition. Section 4 describe the DEMON algorithm struc-
ture, with algorithmic details and an account of the formal
properties of the method. Our experiments are presented in
Section 5, and finally Section 6 concludes the paper.

2. RELATED WORK
The problem of finding communities in complex networks

is very popular among network scientists, as witnessed by an
impressive number of valid works in this field. A huge sur-
vey by Fortunato [9] explores all the most popular techniques
to find communities in complex networks. Traditionally, a
community is defined as a dense subgraph, in which the
number of edges among the members of the community is
significantly higher than the outgoing edges. However, this
definition does not cover many real world scenarios, and in
the years many different solutions started to explore alter-
native definitions of communities in complex networks [6].

A variety of CD methods are based on the modularity
concept, a quality function of a partition proposed by New-
man [5, 18]. Modularity scores high values for partitions in
which the internal cluster density is higher than the external
density. Hundreds of papers have been written about mod-
ularity, either using it as a quality function to be optimized,
or studying its properties and deficiencies. One of the most
advanced examples of modularity maximization CD is [17],
where the authors use an extension of the modularity for-
mula to cluster multiplex (evolving and/or multirelational)
networks. A fast and efficient greedy algorithm, Modularity
Unfolding, has been successfully applied to the analysis of
huge web graphs of millions of nodes and billions of edges,
representing the structure in a subset of the WWW [3].

Many algorithms have been proposed that are unrelated
to modularity. Among them, a particular important field
is the application of information theory techniques, as for
example in Infomap [22] or Cross Associations [19]. In par-
ticular, Infomap has been proven to be one among the best
performing non overlapping algorithms [15]. For this reason
we chose Infomap as alternative to modularity approaches
as a baseline method. Further, modularity approaches are
affected by known issues, namely the resolution problem and
the degeneracy of good solutions [10]. Similarly to Infomap,
Walktrap [20] is based on flow methods and random walks.

A very important property for community discovery is the
ability to return overlapping partitions, i.e., the possibility
of a node to be part of more than one community. This prop-
erty reflects the common sense intuition that each of us is
part of many different communities, including family, work,
and probably many hobby-related communities. Specific al-
gorithms developed over this property are Hierarchical Link
Clustering [1], HCDF [13] and k-clique percolation [8].

Finally, an important approach is known as Label Prop-
agation [21]: in this work authors detect communities by
spreading labels through the edges of the graph and then
labeling nodes according to the majority of the labels at-
tached to their neighbors, iterating until a general consensus
is reached. With a reasonable good quality on the partition,
this algorithm is extremely fast and known to be one of the
very few quasi-linear solutions to the community discovery

problem, even if its plain application leads to worse results
than Infomap and it does not return an overlapping parti-
tion. A related work is also [2], whose aim is also to discover
local communities. However, authors are only interested in
those local communities and they do not return any global
structure modular organization.

To to extract useful knowledge from the modular structure
of networked data is also a prolific track of research. We
recall the GuruMine framework, whose aim is to identify
leaders in information spread and to detect groups of users
that are usually influenced by the same leaders [12]. Many
other works investigate the possibility of applying network
analysis for studying, for instance, the dynamics of viral
marketing [16].

3. NETWORKS AND COMMUNITIES
We model networks and their properties in terms of simple

graphs. For the sake of simplicity, a network is represented
as an undirected, unlabeled and unweighted simple graph,
denoted by G = (V,E) where V is a set of nodes and E is a
set of edges, i.e., pairs (u, v) representing the fact that there
is a link in the network connecting nodes u and v. It should
be noted, however, that our method can handle weighted,
directed and labeled multi-graphs.

In general terms, our problem definition is to find commu-
nities in complex networks. However, this is an ambiguous
goal, as the definition itself of “community” in a complex
network, similarly to the notion of clustering in statistics
and data mining, is not unique [6]. Furthermore, in a com-
plex and semantically rich setting as the modern Web, one
may want to cluster many different kinds of objects for many
different reasons. Therefore, we need to narrow down our
problem definition as follows.

We define two basic graph operations. The first one is
the Ego Network extraction EN . Given a graph G and a
node v ∈ V , EN(v,G) is the subgraph G′(V ′, E′), where
V ′ is the set containing v and all its neighbors in E, and
E′ is the subset of E containing all the edges (u, v) where
u ∈ V ′ ∧ v ∈ V ′. The second operation is the Graph-Vertex
Difference −g: −g(v,G) will result in a copy of G without
the vertex v and all edges attached to v. The combination
of these two functions yields the EgoMinusEgo function:
EgoMinusEgo(v,G) = −g(v,EN(v,G)). Given a graph G
and a node v ∈ V , the set of local communities C(v) of
node v is a set of (possibly overlapping) sets of nodes in
EgoMinusEgo(v,G), where each set C ∈ C(v) is a commu-
nity according to node similarity: each node in C is more
similar to any other node in C than to any other node in
C′ ∈ C(v), with C 6= C′. Finally, we define the set of global
communities, or simply communities, of a graph G as:

C = Max(
⋃
v∈V

C(v)) (1)

where, given a set of sets S, Max(S) denotes the sub-
set of S formed by its maximal sets only; namely, every set
S ∈ S such that there is no other set S′ ∈ S with S ⊂ S′.
In other words, by equation (1) we generalize from local to
global communities by selecting the maximal local commu-
nities that cover the entire collection of local communities,
each found in the EgoMinusEgo network of each individual
node.

617

Algorithm 1 The pseudo-code of DEMON algorithm.

Require: G : (V,E); C = ∅; ε ∈ [0..1]
Ensure: set of overlapping communities C
1: for all v ∈ V do
2: e← EgoMinusEgo(v,G)
3: C(v)← LabelPropagation(e)
4: for all C ∈ C(v) do
5: C ← C ∪ v
6: C ←Merge(C, C, ε)
7: end for
8: end for
9: return C

4. THE ALGORITHM
In this section we present our solution to the community

discovery problem. The pseudo code of DEMON is specified
in Algorithm 1.

4.1 The Core of the Algorithm
The set of discovered communities C is initially empty.

The external (explicit) loop of DEMON cycles over each in-
dividual node, and it is necessary to generate all the possible
points of view of the structure and get a complete cover-
age of the network itself. For each node v, we apply the
EgoMinusEgo(v,G) operation defined in Section 3, obtain-
ing a graph e. We cannot apply simply the ego network ex-
traction EN(v,G) because the ego node v is directly linked
to all nodes ∈ EN(v,G). This would lead to noise in the
subsequent steps of DEMON, since by our definition of local
community the nodes would be put in the same community
if they are close to each other. Obviously a single node con-
necting the entire sub-graph will make all nodes very close,
even if they are not in the same community. For this reason,
we remove the ego from its own ego network.

Once we have the e graph, the next step is to compute the
communities contained in e. We chose to perform this step
by using a community discovery algorithm borrowed from
the literature. Our choice fell on the Label Propagation (LP)
algorithm [21]. This choice has been made for the following
reasons:

1. LP shares with this work the definition of what is a
community.

2. LP is known as the least complex algorithm in the
literature, reaching a quasi-linear time complexity in
terms of nodes. However,

3. LP will return results of a quality comparable to more
complex algorithms [6].

Reason #2 is particularly important, since Step #3 of
our pseudo code needs to be performed once for every node
of the network. It is unacceptable to spend a superlinear
time for each node at this stage, if we want to scale up to
millions of nodes and hundreds of millions edges. Given the
linear complexity of Step #3, we refer to this as the internal
(implicit) loop for finding the local communities.

We briefly describe in more detail the LP algorithm, given
its importance in the DEMON algorithm, following the origi-
nal article [21]. Suppose that a node v has neighbors v1, v2, ..., vk
and that each neighbor carries a label denoting the commu-
nity that it belongs to. Then v determines its community
based on the labels of its neighbors. A three-step example

a

c
b

a

a
a

a

a c

c

c
a

c
b

b

b

a

c

a

a

b

a

c
c

c
c

a

b

b

b

a

a
a

a

a a

c

c
c

c
c

b

b

b b

Figure 2: A simple simulation of the Label Propagation pro-
cess for community discovery.

of this principle is shown in Figure 2. The authors assume
that each node in the network chooses to join the commu-
nity to which the maximum number of its neighbors belong.
As the labels propagate, densely connected groups of nodes
quickly reach a consensus on a unique label. At the end
of the propagation process nodes with the same labels are
grouped together as one community. Clearly, a node with an
equal maximum number of neighbors in two or more com-
munities can belong to both communities, thus identifying
possible overlapping communities. The original algorithm
does not handle this situation. For clarity, we report here
the procedure of the LP algorithm, that is the expansion of
Step #3 of Algorithm 1 and represents our inner loop:

1. Initialize the labels at all nodes in the network. For
any given node v, Cv(0) = v.

2. Set t = 1.

3. Arrange the nodes in the network in a random order
and set it to V .

4. For each vi ∈ V , in the specific order, let Cvi(t) =
f(Cvi1(t−1), . . . , Cvik (t−1)). f here returns the label
occurring with the highest frequency among neighbors
and ties are broken uniformly randomly.

5. If every node has a label that the maximum number
of their neighbors have, or t hits a maximum number
of iterations tmax then stop the algorithm. Else, set
t = t+ 1 and go to (3).

4.2 The Merge Function
The result of Step #3 of Algorithm 1 is a set of local

communities, according to the perspective of node v: at
the end of the LP algorithm we reintroduce, in each local
community, the node v. These communities are likely to
be incomplete and should be used to enrich what DEMON
already discovered so far. Thus, the next step is to merge
each local community of C in order to obtain the result set.
The Merge operation is defined as follows.

Two communities C and I are merged if and only if at
most the ε% of the smaller one is not included in the bigger
one; in this case, C and I are removed from C and their
union is added to the result set. The ε factor is introduced to
vary the percentage of common elements provided from each
couple of communities: ε = 0 ensure that two communities
are merged only if one of them is a proper subset of the other,
on the other hand with a value of ε = 1 even communities
that do not share a single node are merged together.

618

Algorithm 2 The pseudo-code of Merge function.

Require: C = Community set;C = Community; ε ∈ [0..1]
Ensure: set of overlapping communities C
1: for all I ∈ C do
2: if C.size ≤ I.sizeandC ⊆ε I then
3: u = C ∪ I;
4: C − C; C − I;
5: C = C ∪ u;
6: end if
7: end for
8: return C

4.3 DEMON Properties
To prove the correctness of the DEMON algorithm w.r.t.

the problem definition in Section 3, we prove by induction
that the following holds:

Property 1. At the k-th iteration of the outer loop of
DEMON, for all k ≥ 0:

C = Max(
⋃

v=v1,...,vk

C(v)) (2)

where v1, . . . , vk are the nodes visited after k iterations.

Property (1) trivially holds for k = 0, i.e., at initialization
stage. For k > 0, assume that the property holds up to
k − 1. Then C contains the maximal local communities of
the subgraph with nodes v1, . . . , vk−1. By merging every lo-
cal community C of node vk into C, we guarantee that C is
added to the result only if it is not covered by any preex-
isting community, and, if added, any preexisting community
covered by C is removed from C. As a result, after merging
all communities in C(vk) into C in Steps #4-6, the latter is
the set of maximal communities covering all local commu-
nities discovered in v1, . . . , vk. Therefore, we can conclude
that DEMON is a correct and complete implementation of
the CD problem stated by equation (1). More generally, de-
noting by DEMON(G, C) the set of communities C′ obtained
by running the DEMON algorithm on graph G starting with
the (possibly non-empty) set of communities C, the following
properties hold.

Property 2. Correctness and Completeness.
If DEMON(G, C) = C′, where G = (V,E), then

C′ = Max(C ∪
⋃
v∈V

C(v)) (3)

In other words, given a preexisting set of communities C
and a graph G, DEMON returns all and only the commu-
nities obtained extending C with the communities found in
G, coherently with the definition of communities given in
equation (1).

Property 3. Determinacy and Order insensitivity.
There exists a unique C′ = DEMON(G, C) for any given G
and C, disregarding the order of visit of the nodes in G.

This is a direct corollary of property (2) and of the unique-
ness of the set Max(S) for any set of sets S, under the
assumption that the set of local communities C(v) is also
uniquely assigned, for any node v. Therefore, the order in
which the nodes in G are visited by DEMON is irrelevant.

Property 4. Compositionality. Consider any parti-
tion of a graph G into two subgraphs G1, G2 such that, for
any node v of G, the entire ego network of v in G is fully
contained either in G1 or G2. Then, given an initial set of
communities C:

DEMON(G1∪G2, C) = Max(DEMON(G1, C)∪DEMON(G2, C))
(4)

This is a consequence of two facts: i) each local community
C(v) is correctly computed under the assumption that the
subgraphs do not split any ego network, and ii) for any
two sets of sets S1,S2, Max(S1 ∪ S2) = Max(Max(S1) ∪
Max(S2)).

Property 5. Incrementality. Given a graph G, an ini-
tial set of communities C and an incremental update ∆G
consisting of new nodes and new edges added to G, where
∆G contains the entire ego networks of all new nodes and of
all the preexisting nodes reached by new links, then

DEMON(G ∪∆G, C) = DEMON(∆G,DEMON(G, C)) (5)

This is a consequence of the fact that only the local com-
munities of nodes in G affected by new links need to be
reexamined, so we can run DEMON on ∆G only, avoiding
to run it from scratch on G ∪∆G.

Properties (4) and (5) have important computational reper-
cussions. The compositionality property entails that the
core of DEMON algorithm as described in subsection 4.1
is highly parallelizable, because it can run independently
on different fragments of the overall network with a rela-
tively small combination work. Each node of the computer
cluster needs to obtain a small fragment of the network,
as small as the ego network of one or a few nodes. The
Map function is simply the LP algorithm. The incremen-
tality property entails that DEMON can efficiently run in
a streamed fashion, considering incremental updates of the
graph as they arrive in subsequent batches; essentially, in-
crementality means that it is not necessary to run DEMON
from scratch as batches of new nodes and new links arrive:
the new communities can be found by considering only the
ego networks of the nodes affected by the updates (both new
nodes and old nodes reached by new links). This does not
trivially hold for the Merge function presented in subsection
4.2, therefore the actual parallel implementation of DEMON
is left as future work. However, different and simpler Merge
functions can be define to combine the results provided by
the core of the algorithm, thus preserving its possibility to
scale up in a parallel framework.

4.4 Complexity
We now evaluate the time complexity of our approach.

DEMON core (Section 4.1) is based on the Label Propaga-
tion algorithm, whose complexity is O(n + m) [21], where
n is the number of nodes and m is the number of edges.
LP is performed once for each node. Let us assume that we
are working with a scale free network, whose degree distri-
bution is pk = k−α. This means that there are n

kα
nodes

with degree k. If K is the maximum degree, the complexity

would be
∑K
k=1(n

kα
× (k + k(k−1)

2
)) because for each node

of degree k we have an ego network of k nodes and at worst
k(k−1)

2
edges. This number is very small for the vast ma-

jority of nodes, being the degree distribution right skewed,
thus many nodes have degree 1 or 2. We omit the solution

619

of the sum with the integral and we report that the com-
plexity is then dominated by a single term, ending up to be
O(nK3−α). This means that the stronger is the α exponent,
the faster is DEMON: with α = 3 we have few super-hubs
for which we basically check the entire network few times
and the rest of nodes add nothing to the complexity; with
α = 2 we have many high degree nodes and we end up with
higher complexity, but still subquadratic in term of nodes
(as, with α = 2, K << n).

5. EXPERIMENTS
We now present our experimental findings. We make use

of three networked datasets, representing very different phe-
nomena. We first concentrate on evaluating the quality of
a set of communities discovered in these datasets, compar-
ing the results with those of other competing methods in
terms of the predictive power of the discovered communities.
Since real world data are enriched with annotated informa-
tion, we measure the ability of each community to predict
the semantic information attached with the metadata of the
nodes within the community itself.

Next, we assess the community quality using a global mea-
sure of community cohesion, based on the intuition that
nodes into the same community should possess similar se-
mantic properties in terms of attached metadata.

The selected competitors for our assessment are: Hier-
archical Link Clustering (HLC) [1], that has been proven
able to outperform all the overlapping algorithms, includ-
ing the k-clique Propagation algorithm by Palla et al [8];
two random walks based methods, one focusing on mini-
mizing random walk entropy (Infomap [22]) and the other
relying on a general flow method (Walktrap [20]); a leading
eigenvector-based community discovery, namely Modularity
maximization in the fast greedy implementation introduced
in [5]. Finally, we present some examples of knowledge that
we are able to extract from the communities found by the
DEMON algorithm.

Note that we are not able to provide the analytic evalua-
tion for Amazon dataset: for that network HLC algorithm
was not able to provide results due to memory consumption
problems, while the other community discovery algorithms
usually returned some huge communities that was not pos-
sible to analyze (see Section 5.2 and particularly Figure 4
for more information).

The experiments were performed on a Dual Core Intel i7
64 bits @ 2.8 GHz, equipped with 8 GB of RAM and with
a kernel Linux 3.0.0-12-generic (Ubuntu 11.10). The code
was developed in Java and it is available for download with
the network datasets used2. For performances purposes, we
mainly refer to the biggest dataset, i.e. Amazon: the core of
the algorithm (Section 4.1) took less than a minute, while
the Merge function (Section 4.2) with increasing thresholds
can take from one minute to one hour.

5.1 Networks
We tested our algorithms on three real world complex net-

works extracted from available web services of different do-
mains. A general overview about the statistics of these net-
works can be found in Table 1, where: |V | is the number of
nodes, |E| is the number of edges and k̄ is the average degree
of the network. Congress and IMDb networks are similar to

2http://www.di.unipi.it/∼coscia/demon/

Network |V | |E| k̄
Congress 526 14,198 53.98
IMDb 56,542 185,347 6.55
Amazon 410,236 2,439,437 11.89

Table 1: Basic statistics of the studied networks.

the ones used in [1], generally updating the source dataset
with a more recent set of data, and we refer to that paper for
a deeper description of them. The networks were generated
as follows:

Congress. The network of legislative collaborations be-
tween US representatives of the House and the Senate during
the 111st US congress (2009-2011). We downloaded the data
about all the bills discussed during the last Congress from
GovTrack3, a web-based service recording the activities of
each member of the US Congress. The bills are usually co-
sponsored by many politicians. We connect politicians if
they have at least 75 co-sponsorships and delete all the con-
nections that are created only by bills with more than 10
co-sponsors. Attached to each bills in the Govtrack data we
have also a collection of subjects related to the bill. The set
of subjects a politicians frequently worked on is the qualita-
tive attribute of this network.
IMDb. We downloaded the entire database of IMDb from

their official APIs4 on August 25th 2011. We focus on actors
who star in at least two movies during the years from 2001 to
2010, filtering out television shows, video games, and other
performances. We connect actors with at least two movies
in which they both appear. This network is weighted ac-
cording to the number of co-appearances. Our qualitative
attributes are the user assigned keywords, summarizing the
movies each actor has been part of.

Amazon. We downloaded Amazon data from the Stan-
ford Large Network Dataset Collection5. In this dataset,
frequent co-purchases of products are recorded for the day
of May 5th 2003. We transformed the directed network in an
undirected version. We also downloaded the metadata infor-
mation about the products, available in the same repository.
Using this metadata, we can define the qualitative attributes
for each product as its categories.

5.2 Quality Evaluation via Label Prediction
We first assess DEMON performances using a classical

prediction task. We attach the community memberships of
a node as known attributes, then its qualitative attributes
(real world labels) as target to be predicted; we then feed
these attributes to a state-of-the-art label predictor and record
its performance. Of course, a node may have one or more
known attributes, as both DEMON and HLC are overlap-
ping community discoverers; and it may have also one or
more unknown attributes, as it can carry many different la-
bels.

For this reason, we need a multilabel classificator, i.e. a
learner able to predict multiple target attributes [24]. We
chose to use the Binary Relevance Learner. The BRL learns
|L| binary classifiers Hl : X → {l,¬l}, one for each different
label l ∈ L. It transforms the original data set into |L| data
sets Dl that contain all examples of the original data set,

3http://www.govtrack.us/developers/data.xpd
4http://www.imdb.com/interfaces
5http://snap.stanford.edu/data/index.html

620

Network DEMON HLC Infomap Modularity Walktrap

Congress 0.21275 0.14740 0.00535 0.00099 0.00725
IMDb 0.44252 0.43078 0.38470 0.10692 0.17488

Table 2: The F-Measure scores for Congress and IMDb
dataset and each community partition.

labeled as l if the labels of the original example contained
l and as ¬l otherwise. It is the same solution used in or-
der to deal with a single-label multi-class problem using a
binary classifier. Note that this classifier does not penalize
per se non-overlapping partitions, as each target label is clas-
sified independently, and this property is requested to fairly
confront overlapping algorithms such as DEMON and HLC,
with the other non-overlapping algorithms. We used the
Python implementation provided in the Orange software6.
For time and memory constraints due to the BRL complex-
ity, for IMDb we used as input only the biggest communities
(with more than 15 nodes) and eliminating all nodes that
are not part of any of the selected communities.

Multi-label classification requires different metrics than
those used in traditional single-label classification. Among
the measures that have been proposed in the literature,
we use the multi-label version of the standard Precision
and Recall measures. Let Dl be our multi-label evaluation
data set, consisting of |Dl| multi-label examples (xi, Yi), i =
1..|Dl|, Yi ⊆ L. Let H be our BRL multi-label classifier and
Zi = H(xi) be the set of labels predicted by H for xi. Then,
we can evaluate Precision and Recall of H as:

Precision(H,Dl) =
1

|Dl|

|Dl|∑
i=1

|Yi ∩ Zi|
|Zi|

,

Recall(H,Dl) =
1

|Dl|

|Dl|∑
i=1

|Yi ∩ Zi|
|Yi|

.

We then derive the F-measure from Precision and Recall.
For alternatives multi-label evaluations, we refer to [11]. The
results are reported in Table 2 and show how DEMON out-
performs its competitors. We did not test Amazon network
as HLC was not able to provide results due to its complexity
and further the BRL classifier was not able to scale for the
overall number of nodes and labels.

For IMDb dataset, HLC was able to score almost like
DEMON. However, there is an important distinction to be
made about the quantity of the results: if the community
discovery returns too many communities, then it is difficult
to actually extract useful knowledge from them. We re-
ported in Table 3 the basic statistics about the partitions
returned by the algorithms: number of communities (|C|)
and average community size (¯|c|). For DEMON, we report
the statistics of the communities extracted with ε = 0. As
we can see, not only DEMON scores better results, but it
does with 70-80% less communities than HLC and with an
average community size more manageable than Infomap.

We report in Table 3 the results for ε = 0. However, we
vary the ε threshold and see what happens to the number
of communities and to the quality of the results. We can
see that for both Congress and IMDb the Precision, Re-
call and F-Measure scores remains constant (and actually
F-Measure peaks at ε = 0.076 and ε = 0.301 for Congress

6http://orange.biolab.si/

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

V
a

lu
e

 /
 R

a
ti
o

ε

Precision

Recall

F-Measure

Number of Communities

(a) Congress

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

V
a

lu
e

 /
 R

a
ti
o

ε

Precision

Recall

F-Measure

Number of Communities

(b) IMDb

Figure 3: Precision, Recall, F-Measure and number of com-
munities for different ε values.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

c
o
u

n
t(

|C
|)

|C|

Infomap

Demon ε = 0.4

Figure 4: The distribution of the community sizes for DE-
MON and Infomap in the Amazon network.

and IMDb respectively) before falling for increasing ε val-
ues, while the relative number of communities dramatically
drops. For Congress, we have the maximum F-Measure with
only 175 communities; while for IMDb F-Measures peaks
with 6,508 communities (in both cases, less than 50% of the
communities at ε = 0 and than an order of magnitude of
HLC).

A final consideration is needed about the size distribu-
tion of the communities detected by DEMON and the other
community discovery algorithms. In Figure 4 we depicted
the community size distribution for DEMON and Infomap
for the Amazon network. As we can see, Infomap returned,
among the others, a giant community, one order of mag-
nitude greater than the biggest one returned by DEMON.
To analyze such a community has been proved impossible,
and this is another reason why we are not able to provide
an analitycal evaluation of the results extracted from the
Amazon network.

We can conclude that DEMON with a manageable number
of communities is able to outperform more complex methods
and the choice of ε can make the difference in obtaining
a narrower set of communities with the same (or greater)
overall quality.

5.3 Quality Evaluation via Community Cohe-
sion

As presented at the beginning of this section, the networks
studied here possess qualitative attributes that attaches a

621

Network
Demon HLC Infomap Modularity Walktrap
|C| ¯|c| |C| ¯|c| |C| ¯|c| |C| ¯|c| |C| ¯|c|

Congress 425 63.3671 1,476 4.5867 6 87.6667 3 175.3333 7 71.8571
IMDb 14,004 12.6824 88,119 8.3426 5,991 27.1574 4,746 11.9157 7,877 7.1781

Table 3: Statistics of the community set returned by the different algorithms.

Network DEMON HLC Infomap Modularity Walktrap

Congress 1.1792 1.1539 1.0229 1.0373 1.0532
IMDb 5.6158 5.1589 0.1400 1.4652 0.0211

Table 4: The Community Quality scores for Congress and
IMDb dataset and each community partition.

small set of annotations or tags to each node. Assuming
that these qualitative attributes form a description of the
node, beyond the network itself, we can reasonably state
that “similar” nodes share more qualitative attributes than
dissimilar nodes. This procedure is not standard in commu-
nity discovery results evaluation. Usually authors prefer to
use the established measure of Modularity. However, Mod-
ularity is strictly (and exclusively) dependent on the graph
structure. What we want evaluate is not how a graph mea-
sure is maximized, but how good is our community partition
in describing real world knowledge about the clustered enti-
ties.

We quantify the matching between a community parti-
tion and the metadata by evaluating how much higher are
on average the Jaccard coefficient of the set of qualitative
attributes for pair of nodes inside the communities over the
average of the entire network, or:

CQ(P) =

∑
(n1,n2)∈P

|QA(n1)∩QA(n2)|
|QA(n1)∪QA(n2)|∑

(n1,n2)∈E
|QA(n1)∩QA(n2)|
|QA(n1)∪QA(n2)|

,

where P is the set of node pairs that share at least one
community, QA(n) is the set of qualitative attributes of node
n and E is the set of all edges. If CQ(P) = 1, then there is
no difference between P and the average similarity of nodes,
i.e. P is practically random. Lower values implies that
we are grouping together dissimilar nodes, higher values are
expected for an algorithm able to group together similar
nodes.

To calculate the Jaccard coefficient for each pair of the
network is computationally prohibitive. Therefore, for IMDb
we chose a random set of 400k pairs. Moreover, CQ is bi-
ased towards algorithms returning more communities. For
this reason, we just collected random communities from the
community pool, trying to avoid too much overlap as we
want also to maximize the number of nodes considered by
CQ (i.e. we try not to consider more than one community
per node). We apply this procedure for each algorithm and
calculated the CQ value. We repeated this process for 100
iterations and we report in Table 4 the average value of the
CQ obtained. Also in this case, DEMON was able to easily
outperform all the other algorithms.

5.4 Interpretation of Discovered Communities
In this Section we present a brief case study using the

communities extracted for the previously exposed evalua-
tion of DEMON. Aim of the section is to demonstrate that
the extracted communities have practical applications in the
extraction of knowledge from real world scenarios. In the

Figure 5: A representation of parts of the two communities
surrounding our case study in the amazon network.

Amazon network to have different communities for each item
is very useful. A recommendation system is able to better
discern if a user may be interested in a product or not given
that he bought something else; however being part of one
community of products does not mean that that particular
community describes all aspects of a particular product.

Let us consider, as an example, the case of Jared Dia-
mond’s best selling book “Guns, Germs, and Steel: The
Fates of Human Societies”. Clearly, it is difficult to say
that the people interested in this book are always interested
in the same things. Checking the communities to which it
belongs, we find two very different big communities (a de-
piction of the two communities is provided by Figure 5).
These communities have some sort of overlap, however they
can be characterized by looking at the products that appear
exclusively in one or in the other. In the first one we find
books such as: “Beyond the State: An Introductory Cri-
tique”, “The Econometrics of Corporate Governance Stud-
ies” and “The Transformation of Governance: Public Ad-
ministration for Twenty-First Century America”. This is
clearly a community composed mainly by purchases made
by the people more interested in the socioeconomic aspects
of Diamond’s book. The second community hosts products
such as: “An Introduction to Metaphysics”, “Aristophanes’
Clouds Translated With Notes and Introduction” and “Be-
ing and Dialectic: Metaphysics and Culture”. This second
communities is apparently composed by the purchases of
customers more attracted by the underlying philosophical
implications of Diamond’s study. Products in one commu-
nities may have something in common, but they are part of
two distinct and very well characterized groups, and the one
in one group are not expected to be found in the other.

This is of course one of the many cases. We report as an
additional example the two communities around the histori-
cal novel“The Name of the Rose”by Umberto Eco: one com-
munity is characterized by history related products (such as
“Ancestral Passions : The Leakey Family and the Quest for
Humankind’s Beginnings”), the other by costume fiction (for
example the 1932 Dreyer’s movie “Vampyr”).

622

6. CONCLUSION AND FUTURE WORKS
In this paper we proposed a new method for solving the

problem of detecting latent knowledge from significant com-
munities in complex networks. We propose a democratic
approach, where the peer nodes judge where their neighbors
should be clustered together. This approach has robust the-
oretical properties, including correctness and completeness
w.r.t. a precise community definition, determinacy, composi-
tionality and incrementality, that make it amenable to chal-
lenge the conceptual and computational challenge to analyze
networks with millions of nodes. We have shown in the ex-
perimental section that this method allows a discovery of
communities in different real world networks collected from
information rich datasets. The quality of the overlapping
partition, a partition that allows nodes to be in different
communities at the same time, is improved w.r.t state-of-
the-art algorithms, evaluated using the communities to pre-
dict the metadata attached to the nodes, and according to
a quantitative quality function, also metadata-based.

Many lines of research remain open for future work, such
as an efficient parallel implementation that may make DEMON
the first community discovery algorithm able to scale to bil-
lions of nodes; different merging strategies that may fur-
ther improve the quality of the results; different hosted al-
gorithms can be used instead of the Label Propagation algo-
rithm in the inner loop of DEMON, to extract communities
according to different definitions.

Acknowledgments. Michele Coscia is a recipient of the
Google Europe Fellowship in Social Computing, and this re-
search is supported in part by this Google Fellowship. This
work has been partially supported by the European Com-
mission under the FET-Open Project n. FP7-ICT-270833,
DATA SIM – DATa science for SIMulating the era of electric
vehicles http://www.datasim-fp7.eu/.

7. REFERENCES
[1] Yong-Yeol Ahn, James P. Bagrow, and Sune Lehmann.

Link communities reveal multiscale complexity in
networks. Nature, 466(7307):761–764, June 2010.

[2] James P. Bagrow and Erik M. Bollt. Local method for
detecting communities. Physical Review E,
72(4):046108+, October 2005.

[3] Vincent D. Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. Fast unfolding of
communities in large networks. J.STAT.MECH., page
P10008, 2008.

[4] Paolo Boldi, Marco Rosa, Massimo Santini, and
Sebastiano Vigna. Layered label propagation: a
multiresolution coordinate-free ordering for
compressing social networks. In WWW, pages
587–596, 2011.

[5] Aaron Clauset, M. E. J. Newman, and Cristopher
Moore. Finding community structure in very large
networks. Physical Review E, 70:066111, 2004.

[6] Michele Coscia, Fosca Giannotti, and Dino Pedreschi.
A classification for community discovery methods in
complex networks. Statistical Analysis and Data
Mining, 4(5):512–546, 2011.

[7] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified data processing on large clusters. OSDI,
pages 137–150, 2004.

[8] Imre Derényi, Gergely Palla, and Tamás Vicsek.
Clique Percolation in Random Networks. Physical
Review Letters, 94(16):160202+, April 2005.

[9] S. Fortunato. Community detection in graphs. Physics
Reports, 486:75–174, February 2010.

[10] Santo Fortunato and Marc Barthélemy. Resolution
limit in community detection. PNAS, 104(1):36–41,
January 2007.

[11] Shantanu Godbole and Sunita Sarawagi.
Discriminative methods for multi-labeled
classification. In PAKDD, pages 22–30, 2004.

[12] Amit Goyal, Byung-Won On, Francesco Bonchi, and
Laks V. S. Lakshmanan. Gurumine: A pattern mining
system for discovering leaders and tribes. ICDE,
0:1471–1474, 2009.

[13] Keith Henderson, Tina Eliassi-Rad, Spiros
Papadimitriou, and Christos Faloutsos. Hcdf: A
hybrid community discovery framework. In SDM,
pages 754–765, 2010.

[14] Liran Katzir, Edo Liberty, and Oren Somekh.
Estimating sizes of social networks via biased
sampling. In WWW, pages 597–606, 2011.

[15] A. Lancichinetti and S. Fortunato. Community
detection algorithms: A comparative analysis.
Physical Review E, 80(5):056117–+, November 2009.

[16] Jure Leskovec, Lada A. Adamic, and Bernardo A.
Huberman. The dynamics of viral marketing. ACM
Trans. Web, 1, May 2007.

[17] Peter J. Mucha, Thomas Richardson, Kevin Macon,
Mason A. Porter, and J-P Onnela. Community
structure in Time-Dependent, multiscale, and
multiplex networks. Science, 328(5980):876–878, 2010.

[18] M. E. J. Newman. Modularity and community
structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, June 2006.

[19] Spiros Papadimitriou, Jimeng Sun, Christos Faloutsos,
and Philip S. Yu. Hierarchical, parameter-free
community discovery. In ECML PKDD, pages
170–187, 2008.

[20] Pascal Pons and Matthieu Latapy. Computing
communities in large networks using random walks. J.
Graph Algorithms Appl., 10(2):191–218, 2006.

[21] Usha N. Raghavan, Réka Albert, and Soundar
Kumara. Near linear time algorithm to detect
community structures in large-scale networks. Physical
Review E, 76(3):036106+, September 2007.

[22] Martin Rosvall and Carl T. Bergstrom. Maps of
random walks on complex networks reveal community
structure. PNAS, 105(4):1118–1123, January 2008.

[23] Jianhua Ruan and Weixiong Zhang. An efficient
spectral algorithm for network community discovery
and its applications to biological and social networks.
Data Mining, IEEE International Conference on,
0:643–648, 2007.

[24] G. Tsoumakas and I. Katakis. Multi label
classification: An overview. International Journal of
Data Warehousing and Mining, 3(3):1–13, 2007.

[25] Dashun Wang, Zhen Wen, Hanghang Tong,
Ching-Yung Lin, Chaoming Song, and Albert-László
Barabási. Information spreading in context. In WWW,
pages 735–744, 2011.

623

	Introduction
	Related Work
	Networks and Communities
	The Algorithm
	The Core of the Algorithm
	The Merge Function
	DEMON Properties
	Complexity

	Experiments
	Networks
	Quality Evaluation via Label Prediction
	Quality Evaluation via Community Cohesion
	Interpretation of Discovered Communities

	Conclusion and Future Works
	References

