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Abstract. We describe a system which generates finite domain constraint models
from positive example solutions, for highly structured problems. The system is
based on the global constraint catalog, providing the library of constraints that
can be used in modeling, and the Constraint Seeker tool, which finds a ranked list
of matching constraints given one or more sample call patterns.
We have tested the modeler with 230 examples, ranging from 4 to 6,500 variables,
using between 1 and 7,000 samples. These examples come from a variety of
domains, including puzzles, sports-scheduling, packing & placement, and design
theory. When comparing against manually specified “canonical” models for the
examples, we achieve a hit rate of 50%, processing the complete benchmark set
in less than one hour on a laptop. Surprisingly, in many cases the system finds
usable candidate lists even when working with a single, positive example.

1 Introduction

In this paper we present the Model Seeker system which generates constraint models
from example solutions. We focus on problems with a regular structure (this encom-
passes matrix models [14]), whose models can be compactly represented as a small
set of conjunctions of identical constraints. We exploit this structure in our learning
algorithm to focus the search for the strongest (i.e. most restrictive) possible model.

In our system we use global constraints from the global constraint catalog [2] mainly
as modeling constructs, and not as a source of filtering algorithms. The global con-
straints are the primitives from which our models are created, each capturing some
particular aspect of the overall problem. Using existing work on global constraints for
mixed integer programming [20] or constraint based local search [16], our results are
not only applicable for finite domain constraint programming, but can potentially reach
a wider audience.

The input format we have chosen consists of a flat vector of integer values, allowing
for different representations of the same problem. We do not force the user to adapt his
input to any particular technology, but rather aim to be able to handle examples taken
from a variety of existing sources.
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In our method we extensively use meta-data about the constraints in the catalog,
which describe their properties and their connection. We have added a number of new,
useful information classes during our work, which prove to be instrumental in recog-
nizing the structure of different models.

The main contribution of this paper is the presentation of the implemented Model
Seeker tool, which can deal with a variety of problem types at a practical scale. The
examples we have studied use up to 6,500 variables, and deal with up to 7,000 samples,
even though the majority of the problems are restricted to few, and often unique solu-
tion samples. We currently only work with positive examples, which seems to provide
enough information to achieve quite accurate models of problems. As a side-effect of
our work we also have strengthened the constraint description in the constraint catalog
with new categories of meta-data, in particular to show implications between different
constraints.

Our paper is structured in the following way: We first introduce a running example,
that we will use to explain the core features of our system. In Section 2, we describe the
basic workflow in our system, also detailing the types of meta-data that are used in its
different components. We present an overview of our evaluation in Section 3, which is
followed by a discussion of related work (Section 4), before finishing with limitations
and possible future work in Section 5. For space reasons we can only give an overview
of the learning algorithm and the obtained results. A full description can be found in a
companion technical report at http://4c.ucc.ie/˜hsimonis/modelling/
report.pdf.

1.1 A Running Example

As a running example we use the 2010/2011 season schedule of the Bundesliga, the Ger-
man soccer championship. We take the data given in http://www.weltfussball.
de/alle_spiele/bundesliga-2010-2011/, replacing team names with num-
bers from 1 to 18. The schedule is given as a set of games on each day of the season.
Table 1 shows days 1, 2, 3, 18 and 19 of the schedule. Each line shows all games of
one day; on the first day, team 1 (at home) is playing against team 2 (away), team 3 (at
home) plays team 4, etc. The second half of the season (days 18-34) repeats the games
of the first half, exchanging the home and away teams, on day 18, for example, team 18
(at home) plays team 17, team 2 (at home) plays team 1, and so on. Overall, each team
plays each other twice, once at home, and once away in a double round-robin scheme.

As input data we receive the flat vector of numbers, we will reconstruct the matrix
as part of our analysis. Note that for most sports scheduling problems we will have
access to only one example solution, the published schedule for a given year, schedules
from different years encode different teams and constraints, and are thus incomparable.

2 Workflow

We will now describe how we proceed from the given positive examples to a candidate
list of constraints modeling the problem. The workflow is described in Figure 1. Data
are shown in green, software modules in blue/bold outline, and specific global constraint



Table 1. Bundesliga Running Example: Input Data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
8 1 14 11 4 7 2 15 12 13 6 9 10 3 18 5 16 17
3 14 17 2 13 6 5 12 9 16 11 18 1 4 15 8 7 10

. . .
18 17 2 1 4 3 6 5 10 9 16 15 14 13 12 11 8 7
13 12 11 14 17 16 15 2 9 6 1 8 7 4 5 18 3 10

. . .

catalog meta-data are shown in yellow/italics. We first give a brief overview of the
modules, and then discuss each step in more detail.

Transformation In a first step, we try to convert the input samples to other, more ap-
propriate representations. This might involve replacing a 0/1 format with finite domain
values, or converting different graph representations into the successor variable form
used by the global constraints in the catalog. For some transformations, we keep both
the original and the transformed representation for further analysis, for others we re-
place the original sample with the transformed data.

Candidate Generation The second step (Sequence Generation) tries to group the vari-
ables of the sample into regular subsets, for example interpreting the input vector as a
matrix and creating subsequences for all rows and all columns. In the Argument Cre-
ation step, we create call patterns for constraints from the subsequences. We can try
each subsequence on its own, or combine pairs of subsequences or use all subsequences
together in a single collection. We also try to add additional arguments based on func-
tional dependencies and monotonic arguments of constraints, described as meta-data in
the global constraint catalog. For each of these generated call patterns, we then call the
Constraint Seeker to find matching constraints, which satisfy all subsequences of all
samples. For this we enforce the Typical Restrictions, meta-data in the catalog, which
describe how a constraint is typically used in a constraint program. Only the highest
ranking candidates are retained for further analysis.

Candidate Simplification After the seeker calls, we potentially have a very large list
of possible candidate conjunctions (up to 2,000 conjunctions in our examples), we now
have to reduce this set as much as possible. We first apply a Dominance Check to
remove all conjunctions of constraints that we can show are implied by other conjunc-
tions of constraints in our candidate list. Instead of showing the implication from first
principles, we rely on additional meta-data in the catalog, which describe implications
between constraints, but we also use conditional implications which only hold if cer-
tain argument restrictions apply, and expandible and contractible [22] properties, which
state that a constraint still holds if we add or remove some of its decision variables. The
dominance check is the core of our modeling system, helping to remove irrelevant con-
straints from the candidate list. In the last step before our final candidate list output the
system removes trivial constraints and simplifies some constraint pattern. This also per-
forms a ranking of the candidates based on the constraint and sequence generator used,



Fig. 1. Workflow in the Model Seeker
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trying to place the most relevant conjunction of constraints at the top of the candidate
list.
Code Generation As a side effect of the initial transformation, we also create potential
domains for the variables of our problem. In the default case, we just use the range of
all values occurring in the samples, but for some graph-based transformations a more
refined domain definition is used. Given the candidate list and domains for the variables,
we can easily generate code for a model using the constraints. At the moment, we
produce SICStus Prolog code using the call format of the catalog. The generated code
can then be used to validate the samples given, or to find solutions for the model that
has been found.

After this brief overview, we will now discuss the different process steps in more
detail.

2.1 Transformation

In finite domain programming, there are implicit conventions on how to express mod-
els leading to effective solution generation. In our system, we can not assume that the
user is aware of these conventions, nor that the sample solutions are already provided



in the “correct” form. We therefore try to apply a series of (currently 12) input trans-
formations, that convert between different possible representations of problems, and
that retain the form which matches the format expected by the constraint catalog. In
each case, some pre- and post-conditions must be satisfied for the transformation to be
considered valid. We now give some examples.
Converting 0/1 Samples If a solution is given using only 0/1 values, there may be a
way of re-interpreting the sample as a permutation with finite domain variables. If we
consider the 0/1 values as an n × n matrix (xij) where each row and each column
contains a single one, we can transform this into a vector vi of n finite domain values
based on the equivalence

∀1≤i≤n∀1≤j≤n : xij = 1⇒ vi = j

This transformation is the equivalent of a channeling constraint between 0/1 and finite
domain variables, described for example in [19].
Using successor notation for graph constraints Most graph constraints in the catalog
use a successor notation to describe circuits, cycles or paths, i.e. the value of a node
indicates the next node in the final assignment. But this is not the only way of describing
graphs. In the original Knight’s Tour formulation [31], the value of a node is the position
in the path, i.e. the first node has value one, the second value two, and so on. We have
defined transformations which map between these (and several other) formats, while
checking that the resulting graph can be compactly described.

Table 2. Bundesliga Running Example: Transformed Problem

2 −1 4 −3 6 −5 8 −7 10 −9 12 −11 14 −13 16 −15 18 −17

−8 15 −10 7 −18 9 −4 1 −6 3 −14 13 −12 11 −2 17 −16 5

4 −17 14 −1 12 −13 10 −15 16 −7 18 −5 6 −3 8 −9 2 −11

. . .
−2 1 −4 3 −6 5 −8 7 −10 9 −12 11 −14 13 −16 15 −18 17

8 −15 10 −7 18 −9 4 −1 6 −3 14 −13 12 −11 2 −17 16 −5

. . .

Using Schreuder tables Another transformation is linked to sports scheduling prob-
lems. In many cases, users like to give the schedule as a list of fixtures, listing which
games will be played on each day. The first team is the home team, the second the away
team. For constraint models, the format of Schreuder tables [28], as shown in Table 2
for our running example, can lead to more compact models [24, 30, 17, 18]. For each
time-point t over q rounds and for an even number of teams n, they can be obtained
from the fixture representation as follows:

∀1≤t≤q(n−1)∀1≤i≤bn/2c : x2i−1,t = k, x2i,t = l⇒ vk,t = l, vl,t = −k



2.2 Sequence Generator

After the input transformation, we have to consider possible, regular substructures
which group the samples into subsequences. For space reasons again, we only give
some examples of the sequence generators used in our running example, the full list
(containing 21 generators) with their formal definition can be found in the technical
report, some were already described in [4].
vector(n) This is the most basic sequence generator of treating all elements of the sam-
ple as a single sequence of size n.
scheme(n, r, c, a, b) By far the most common sequence generator treats a sample of
length n as an r × c matrix, and creates non-overlapping blocks of size a× b, creating
n/ab sequences of size ab. The number of such partitions depends on the number of
factors of n, as n = rc. For our running example (Section 1.1) with 612 values, we
have to consider the matrices 2 × 306, 3 × 204, 4 × 153, 6 × 102, 9 × 68, 17 × 36,
18× 34, 34× 18, 36× 17, 68× 9, 102× 6, 153× 4, 204× 3 and 306× 2. Some of the
blocks created from these matrices lead to the same partition of the variables, only one
representative is kept.
repart(n, r, c, a, b) This sequence generator also treats the sample of size n as a r × c
matrix, and considers blocks of size a× b. But it groups elements in the same position
from each block, creating a× b sequences of size n/(ab).

For the running example, a total of 68 subsequence collections are generated. Note
that the subsequences often, but not always, have the same size. We also provide an
API where the user can provide his own sequence generators, this can be helpful to deal
with known, but irregular structure in the problem.

2.3 Argument Creation

In the next step of the operation, we convert the generated subsequences into call pat-
terns for the Constraint Seeker [3]. In order to consider more of the constraints in
the catalog, we have to provide different argument signatures by organizing the sub-
sequences in different ways, and by adding arguments.
Single, Pairs and Collection In the first part we decide how we want to use the sub-
sequences. Consider we have k subsequences, each of length m. If we use each subse-
quence on its own, we create k call patterns with a single argument, each a collection
of m variables. This corresponds to the argument pattern used by alldifferent
constraints, for example. We can also consider pairs of subsequences, creating a call
patterns with two arguments, for k− 1 calls to a predicate like lex greater. Finally
we can use all subsequences as a single collection of collections, which creates one
call with a collection of k collections of m elements each. This would match a con-
straint like lex alldifferent. We generate all these potential calls in parallel, and
perform the steps described in the following two paragraphs.
Value Projection For some problems (like our transformed, running example), a pro-
jection from the original domain to a smaller domain can lead to a more compact model.
If, for example, some of the values in the sample are positive, and others are negative,
we can try a projection using the absolute value or the sign of the numbers, in addition
to the original values.



Adding Arguments Many global constraints use additional arguments besides the main
decision variables. If we do not generate these arguments in the call pattern, we can
not find such constraints with the Constraint Seeker. But just enumerating all possible
values for these additional arguments would lead to a combinatorial explosion. Fortu-
nately, we can compute values for these arguments in case of functional dependencies
and monotonic arguments. This is similar to the argument generation discussed for the
gcc constraint discussed in [8].

2.4 Constraint Seeker

The Constraint Seeker [3] will find a ranked list of global constraints that satisfy a
collection of positive and negative sample calls, using the available constraint checkers
of the catalog. We use this seeker as a black-box for all call patterns with all additional
argument values and value projections defined in the previous section.
Using Multiple, Positive Samples The seeker first checks that the call signature matches
the constraint, then tries to evaluate the constraint on the samples. In our case, these are
the call patterns prepared in the previous step for all subsequences of all positive ex-
amples given. In our modeling system we currently do not consider negative examples.
They would require a slightly different treatment, as a negative example can be rejected
by just one constraint, while all positive examples must be accepted by all constraints
found.
Typical Restrictions In addition to the restrictions that must hold for the constraint
to be applied, in our modeling tool we also check for the typical restrictions that are
specified in the catalog. The alldifferent constraint for example can be called
with an empty collection, but a typical use would have more than two variables in the
collection. The typical constraints are expressed using the same language as the formal
restrictions of the catalog, checking their validity thus does not require any additional
code.
Selecting Top-Ranked Elements The Constraint Seeker returns a ranked list of can-
didates, this ranking is a combination of structural properties (functional dependencies
or monotonic arguments), implications between constraints, estimated solution density
and estimated popularity of the constraint described in [3]. In our system we only use
the top ranked element that satisfies all subsequences of all samples. This reduces the
number of candidates to be considered, while at the same time it does not seem to
exclude constraints that are required for the highly structured problems considered.

For our running example, we perform 1,099 calls to the Constraint Seeker, which
performs 82,458 constraint checks, and which results in 589 possible candidate con-
junctions. We now face the task of reducing this candidate list as much as possible,
keeping only interesting conjunctions.

2.5 Bottom-up Dominance

Some constraints like sum or gcc have the aggregate property, one can combine mul-
tiple such constraints over disjoint variable sets by adding the right hand sides or sum-
ming the counter values. As an example, we can combine

x1 + x2 = 5 ∧ x3 + x4 = 2⇒ x1 + x2 + x3 + x4 = 7



We want to remove aggregated constraints of this type, as they are implied by con-
junctions of smaller constraints. We perform a bottom-up saturation of combining con-
straints with the aggregate property up to a limited size, and remove any candidate
conjunctions where all constraints are dominated.

2.6 Dominance Check

The dominance check compares all conjunction candidates against each other (worst
case quadratic number of comparisons), and marks dominated entries. Note that dom-
inated entries may be used to dominate other entries, and thus can not be removed
immediately. We use a number of meta-data fields to check for dominance.
Implications In our final candidate list, we are interested in only the strongest, most
restrictive constraints, all constraints that are implied by other candidate constraints can
be excluded. Note that this will sometimes lead to overly restrictive solutions, especially
if only a few samples are given.

Checking if some conjunction is implied by some other conjunction for a particular
set of input values is a complex problem, a general solution would require sophisticated
theorem proving tools like those used in [11] for a restricted problem domain. We do
not attempt such a generic solution, but instead rely on meta-data in the catalog linking
the constraints. That meta-data is useful also for understanding the relations between
constraints, and thus serves multiple purposes. This syntactic implication check is easy
to implement, but only can be used if both constraints have the same arguments.
Conditional Implications For some constraints additional implications exist, but only
if certain restrictions apply. The cycle constraint for example implies the circuit
constraint, but only if the NCYCLE argument is equal to one. For conditional implications
the arguments do not have to be the same, but the main decision variables used must
match.
Contractibility and Expandability Other useful properties are contractibility [22] and
expandibility. A constraint (like alldifferent) is contractible if it still holds if we
remove some of its decision variables. This allows us to dominate large conjunctions of
constraints with few variables with small conjunctions of constraints with many vari-
ables. Due to the way we systematically generate all subsequence collections, this is
often possible. In a similar way, some constraints like atleast are expandible, they
still hold if we add decision variables. We can again use this property to dominate some
conjunctions of constraints. Details and possible extensions have been described in [4].
Hand-coded Domination Rules Some dominance rules are currently hand-crafted in
the program, if the required meta-data have not yet been formalized in the catalog de-
scription. Such examples can be an important source of requirements for the catalog
itself, enhancing the expressive power of the constraint descriptions.

2.7 Trivia Removal

Even after the dominance check, we can still have candidate explanations which are
valid and not dominated, but which are not useful for modeling. In the trivia removal
section, we eliminate or replace most of these based on sets of rules.



Functional dependencies on single samples In Section 2.3 we have described how
we can add some arguments to a call pattern for functional dependencies. In the case
of pure functional dependencies [1], we have to worry about pattern consisting of a
single subsequence with a single sample. In that case, the constraint does not filter any
pattern, as for each pattern the correct value can be selected. We therefore remove such
candidates.
Constraint Simplification At this point we can also try to simplify some constraints
that have particular structure. A typical example are lex chain constraints on a sub-
sequence, where already the first entries of the collections are ordered in strictly increas-
ing order. We can therefore replace the lex chain constraint on the subsequences
with a strictly increasing constraint on the first elements of the collections,
using a special first sequence generator. These constraints often occur as symmetry-
breaking restrictions in models, which we find if all the samples given respect the sym-
metry breaking.
Uninteresting Constraints Even with the typical restrictions in the Constraint Seeker,
we often find candidates (like not all equal) which are not very interesting for
defining models. As a final safe-guard, we use a black-list to remove some combinations
of constraints and sequence generators that should not be included in our models.

2.8 Candidate List for Bundesliga Schedule

Table 3 shows the list of the candidate conjunctions generated for our transformed ex-
ample problem. Entries in green match a manually defined model, ten other candidates
are also proposed. The arguments of constraints in the Constraint Conjunction column
indicate any additional parameters, the ∗n indicates how many constraints form the con-
junction. The value projections absolute value and sign convert each element of
the input data, id denotes the identity projection.

Some of the constraints mentioned are perhaps unfamiliar, we provide a short def-
inition. The constraint symmetric alldifferent([x1, .., xn]) [2, page 1854] in
line 4 states that

∀1≤i≤n : xi ∈ [1, n];xi = j ⇐⇒ xj = i

It expresses the constraint that if team A plays team B on some day, then team B will
play team A. The constraints twin([〈x1, y1〉, ..., 〈xn, yn〉]) [2, page 1896] in lines 7,
19 and 20 state that

∀1≤i≤n : (xi = u ∧ yi = v)⇒ (∀1≤j≤n : xj = u ⇐⇒ yj = v)

These constraints express the fact that the tournament is played in two symmetric half-
seasons, with home and away games swapped. Note that constraints 8, 21 and 23 also
express this condition, but using an elements constraint, pairing positive and nega-
tive numbers. The alldifferent constraint in line 1 expresses that no repeat games
occur in the season, while that of line 5 states that all teams play on each day. The
strictly increasing constraint in line 9 results from the simplification of a sym-
metry breaking lex chain constraint. The gcc in line 14 states that each team plays
17 home (positive value) and 17 away (negative value) games. Finally, the among seq
constraint in line 22 states that no team has more than two consecutive away games.



Table 3. Constraint Conjunctions for Problem Bundesliga

- Sequence Generator Projection Constraint Conjunction
1 scheme(612,34,18,34,1) id alldifferent*18
2 scheme(612,34,18,2,2) id alldifferent*153
3 scheme(612,34,18,1,18) id alldifferent*34
4 scheme(612,34,18,1,18) absolute value symmetric alldifferent([1..18])*34
5 scheme(612,34,18,17,1) absolute value alldifferent*36
6 repart(612,34,18,34,9) id sum ctr(0)*306
7 repart(612,34,18,34,9) id twin*1
8 repart(612,34,18,34,9) id elements([i,-i])*1
9 first(9,[1,3,5,7,9,11,13,15,17]) id strictly increasing*1

10 vector(612) id global cardinality([-18.. -1-17,0-0,1..18-17])*1
11 repart(612,34,18,34,9) id sum powers5 ctr(0)*306
12 repart(612,34,18,34,9) id sum cubes ctr(0)*306
13 repart(612,34,18,34,3) sign global cardinality([-1-3,0-0,1-3])*102
14 scheme(612,34,18,34,1) sign global cardinality([-1-17,0-0,1-17])*18
15 repart(612,34,18,17,9) sign global cardinality([-1-2,0-0,1-2])*153
16 repart(612,34,18,2,9) sign global cardinality([-1-17,0-0,1-17])*18
17 scheme(612,34,18,1,18) sign global cardinality([-1-9,0-0,1-9])*34
18 repart(612,34,18,34,9) sign sum ctr(0)*306
19 repart(612,34,18,34,9) sign twin*1
20 repart(612,34,18,34,9) absolute value twin*1
21 repart(612,34,18,34,9) sign elements([i,-i])*1
22 scheme(612,34,18,34,1) sign among seq(3,[-1])*18
23 repart(612,34,18,34,9) absolute value elements([i,i])*1
24 first(9,[1,3,5,7,9,11,13,15,17]) absolute value strictly increasing*1
25 first(6,[1,4,7,10,13,16]) absolute value strictly increasing*1
26 scheme(612,34,18,34,1) absolute value nvalue(17)*18

2.9 Domain Creation

By default, the domains of the variables in our generated models are the interval be-
tween the smallest and largest value occurring in the samples. Based on the transforma-
tion used, we can use more restricted domains for graph models like graph partitioning
and domination [15], where the domain of each variable/node specifies the initial graph.

2.10 Code Generation

The code generation builds flat models for the given instances. The programs consist of
five parts, we first define all variables with their domains, then state all restrictions due
to fixed values as assignments, state any projections used to simplify the variables, then
build the constraints in the catalog syntax, and finally call a generic value assignment
routine to search for a solution. We can use the generated model as a test to check if it
accepts the given samples, or to generate new solutions for the problem. Many puzzles
have a unique solution, we can count solutions of our program to see if the generated
model is restrictive enough to capture this property.

It would be straightforward to generate the code for other systems than SICStus
Prolog, provided that the catalog constraints are supported. A version generating FlatZ-



inc[23] or XCSP [27] would be especially attractive to benefit from the variety of back-
end solvers which support these formats.

3 Evaluation

Table 4 shows summary results for selected problems of our evaluation set. The prob-
lems range from sports scheduling (ACC Basketball Scheduling, csplib11; Bundesliga;
DEL2011 (German ice hockey league); Scotish Premier League (soccer); Rabodirect
Pro 12 (rugby)), to scheduling (Job-shop 10x10 [10]) and placement (Duijvestijn, csplib9;
Conway 5x5x5 [5]; Costas Array [12]), design theory (BIBD, csplib28; Kirkman [13];
Orthogonal Latin Squares [9]), event scheduling (Social Golfer, csplib10; Progressive
Party, csplib13) and puzzles. Details of these problems can be found in the technical
report mentioned before. Smaller problems are solved within seconds, even the largest
require less than 5 minutes on a single core of a MacBook Pro (2.2GHz) with 8Gb of
memory.

The columns denote: Transformation Id: the number of the transformation applied
(if any), Instance Size: the number of values in the solution, i.e. the number of variables
in the model, Nr Samples: the number of solutions given as input, Nr Sequences: the
number of sequence sets generated, Nr Seeker Calls: the number of times the Constraint
Seeker is called, Constraint Checks: the number of calls to constraint checkers inside
the seeker, Nr Relevant: the number of initial candidate conjunctions found by the Con-
straint Seeker, Nr Non Dom: the number of non-dominated candidates remaining after
the dominance checkers, Nr Specified: the number of conjunctions specified in the man-
ual, “canonical” model, Nr Models: the number of conjunctions given as output of the
Model Seeker, Nr Missing: how many of the manually defined conjunctions were not
found by the system, Hit Rate: the percentage rate of Nr Specified to Nr Models, a value
of 100% indicates that exactly the candidates of the canonical model were found, and
Time: the execution time in seconds.

For two of the problems, we only find part of the complete model. The Progressive
party problem [29] requires a bin-packing constraint that we currently do not recognize,
as it relies on additional data for the boat sizes, while the ACC basketball problem con-
tains several constraints which apply only for specific parts of the schedule, and which
can not be learned from a single solution. Also note that for the De Jaenisch prob-
lem [26], we show results with and without a transformation. This problem combines
a “near” magic square, found without transformation, with an Euler Knight tour, using
transformation 7.

For our full evaluation, we have used 230 examples from various sources. For 10 of
the examples no reasonable model was generated, either because we did not have the
right sequence generator, or we are currently missing the global constraint required to
express the problem. For a further 37 problems, only part of the model was found. This
is typically caused by some constraint requiring additional data, not currently given as
input, or by an over-specialization of the output, where the Model Seeker finds a more
restrictive constraint than the one specified manually. Overall, we considered 73 con-
straints in the Constraint Seeker, and selected 53 different global constraints as potential
solutions. This is only a fraction of the 380 constraint in the catalog, many of the miss-
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12 Amazons All - 12 156 36 127 35596 55 9 5 8 0 62.50 2,64
8 Queens All - 8 92 20 100 12077 34 7 3 5 0 60.00 0.83
ACC Basketball Schedule - 162 1 109 1786 29117 772 263 23 36 7 n/a 9.17
BIBD (8,14,7,4,3) - 112 92 151 626 92461 232 112 4 15 0 26.67 26.01
Bundesliga 18 612 1 68 1099 52933 589 169 16 26 0 61.54 51.44
Conway 5x5x5 Packing - 102 1 60 184 2619 78 35 1 2 0 50.00 0.42
Costas Array 12 - 12 48 36 121 14820 42 2 2 2 0 100.00 1.01
DEL 2011 - 728 1 235 1334 66999 555 173 3 8 0 37.50 54.23
De Jaenisch Tour - 64 1 83 568 10130 283 58 2 13 0 15.38 1.66
De Jaenisch Tour 7 64 1 36 219 12952 113 67 1 1 0 100.00 0.46
Dominating Knights 8 9 64 2 36 141 11021 51 42 1 1 0 100.00 0.31
Duijvestijn 21 - 84 1 111 504 11625 240 102 1 12 0 8.33 1.77
Euler Knight Cube 4x4x4 7 64 1 36 208 12759 97 58 1 1 0 100.00 0.42
Job Shop 10x10 (10 sol) - 400 10 326 1521 80589 582 130 2 2 0 100.00 40.27
Kirkman Wikipedia - 105 1 40 179 2634 89 39 3 5 0 60.00 1.21
Leaper Tour 18x18 7 324 1 60 298 105955 140 61 1 1 0 100.00 2.18
Magic Square All - 16 7040 33 176 1068574 57 5 4 4 0 100.00 115.07
Magic Square Duerer - 16 1 33 212 2074 115 44 9 15 0 60.00 0.25
Orthogonal Latin Squares 10 - 200 1 147 910 15441 443 118 3 8 0 37.50 6.04
Progressive Party - 174 1 45 171 4279 61 31 4 3 1 n/a 0.70
Rabodirect Pro12 18 264 1 66 1041 46898 539 155 8 13 0 61.54 7.91
Scotish Premier League 18 396 1 68 992 58959 459 157 9 12 0 75.00 14.18
Social Golfer - 288 1 528 2813 69681 1221 256 5 36 0 13.89 61.93
Sudoku 81x81 - 6561 1 91 657 101075 334 68 3 5 0 60.00 244.16

ing constraints have more complex argument signatures or use finite sets, which are
currently not available in SICStus Prolog.

Figure 2 shows the number of candidates found for all examples studied as a func-
tion of the instance size, split between single samples and multiple samples. Note that
the plot uses a log-log scale. The results indicate that even with a single sample, the
number of candidate conjunctions found is quite limited, this drops further if multiple
samples are used.

Another view of all the results is shown in Figure 3. It shows the relationship be-
tween number of variables and execution time, again grouped by problems with a sin-
gle sample and problems for which multiple samples were provided. While no formal
complexity analysis has been attempted, as several subproblems are expressed as con-
straint problems, results seem to indicate a low-polynomial link between problem size
and execution time. The non-linear least square fit for the single sample problems is
8.5e−2x0.90, and for multiple samples 6.1e−3x1.45.



Fig. 2. Candidates as a Function of Problem Size (Variables)
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Fig. 3. Execution Time as a Function of Problem Size (Variables)
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Table 5 shows the number of lines required for the different components of the
system, as well as accumulated execution times over all 230 examples measured for
these components. The programming effort is fairly evenly split amongst the different
components, while the two dominance checkers require nearly two-thirds of the total
execution time, with the constraint seeker using another quarter of the time. The system
is written in SICStus Prolog 4.2, and uses the Constraint Seeker [3] with an additional
6,500 lines of code, and the global constraint catalog meta-data description of 60,000
lines of Prolog.

Table 5. Lines of Code / Run Time per Module over all 230 Examples

Module Lines Time [s] % of Total
Transformation 1,500 1 0.03
Sequence Generation 1,000 53 2.81
Argument Creation 1,000 150 7.84
Constraint Seeker Call 300 464 24.22
Bottom-Up Check 200 506 26.42
Dominance Check 800 739 38.61
Trivia Removal 500 1 0.03
Glue / IO / Test 2,000 - -

4 Related Work

Our approach of searching for conjunctions of identical constraints generalizes the idea
of matrix models [14], which are an often-used pattern in constraint modeling.

The method proposed is a special, restricted case of constraint acquisition [25],
which is the process of finding a constraint network from a training set of positive and
negative examples. The learning process operates on a library of allowed constraints,
and a resulting solution is a conjunction of constraints from that library, each constraint
ranging over a subset of the variables.

The most successful of these systems is the CONACQ system [6], which proposes
the use of version space learning to generate models interactively with the user, rely-
ing on an underlying SAT model to perform the learning. This is shown to work for
binary constraints, but the method breaks down for global constraints over an unlimited
number of variables.

In [7], the authors study the problem of determining argument values for global
constraints like the gcc from example solutions, in the context of timetabling problems.
This is similar to the argument creation we describe in Section 2.3.

The more recent work of [21] considers the use of inductive logic programming for
finding models for problems given as a set of logic formulas. This can be powerful to
find generic, size-independent models for a problem, but again, it is unclear how to deal
with a library of given global constraints, which may not have a simple description as
logic formulas.



Our dominance check based on meta-data is related to the work described in [11],
where they use a theorem prover to find certain implications between constraints for a
restricted domain. This does not rely on meta-data provided in the system, but instead
would require a very powerful theorem prover to work for a collection of constraints
for problems of the size considered here.

Common to all these results is that they have not been evaluated on a large variety
of problems, that they consider only a limited number of potential constraints, and that
problem sizes have been quite small.

5 Limitations, Future Work and Conclusions

We are currently only considering some 70 constraints in the global constraint catalog
in our seeker calls. Many of the missing constraints require additional information (cost
matrix, lookup tables) which have to be provided as additional input data to the system.
For some problems, such additional data, like a precedence graph, may also express
implicit, less regular sequence generators, which define for which variables a constraint
should be stated. Extending our input format to allow for such data would drastically
increase both the number of constraints that can be considered, as well as the range of
application problems that can be modelled.

Most other constraint acquisition systems use both positive and negative examples.
The negative examples are used to interactively differentiate between competing mod-
els of the system. We currently only use positive examples, but given recent results on
global constraint reification [1], we could extend our system to include this functional-
ity.

If we want to provide the functionality we have presented here to end-users, we
will have to consider issues of usability and interactivity, allowing the user to filter
and change constraint candidates, as well as being able to suggest custom sequence
generators tailored to a specific problem.

Ultimately, we are looking for a modeling tool which can analyze samples of dif-
ferent sizes, and generate a generic, size independent model. Building on top of our
existing framework, this would require to express both the sequence generator parame-
ters and any additional arguments for constraints in terms of a variable problem size, to
produce more compact, iterative code instead of the flat models currently generated.

Exploiting the idea that many highly structured combinatorial problems can be de-
scribed by a small set of conjunctions of identical global constraints, this paper proposes
a Model Seeker for extracting global constraint models from positive sample solutions.
It relies on a detailled description of the constraints in terms of meta-data in the global
constraint catalog. The system provides promising results on a variety of problems even
when working from a limited number of examples.
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